Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 2

College Physics for AP® CoursesChapter 2

Problems & Exercises

1.

(a) 7 m

(b) 7 m

(c) +7 m+7 m size 12{+7`m} {}

3.

(a) 12 m

(b) 8 m

(c) +8 m+8 m size 12{+9`m} {}

5.

(a) 3.0 ×104 m/s3.0 ×104 m/s size 12{3 "." "0 " times "10" rSup { size 8{4} } " m/s"} {}

(b) 0 m/s

7.

2 × 10 7 years 2 × 10 7 years size 12{2 times "10" rSup { size 8{7} } " years"} {}

9.

34 . 689 m/s = 124 . 88 km/h 34 . 689 m/s = 124 . 88 km/h

11.

(a) 40.0 km/h40.0 km/h size 12{"40" "." "0 km/h"} {}

(b) 34.3 km/h, 25º S of E.25º S of E. size 12{"25"°" S of E" "." } {}

(c) average speed=3.20 km/h,v-=0.average speed=3.20 km/h,v-=0.

13.

384,000 km

15.

(a) 6.61×1015rev/s6.61×1015rev/s size 12{6 "." "61" times "10" rSup { size 8{"15"} } `"rev/s"} {}

(b) 0 m/s

16.

4 . 29 m/s 2 4 . 29 m/s 2 size 12{4 "." "29"`"m/s" rSup { size 8{2} } } {}

18.

(a) 1.43 s1.43 s size 12{1 "." "43"`s} {}

(b) 2.50m/s22.50m/s2 size 12{ - 2 "." "50"`"m/s" rSup { size 8{2} } } {}

20.

(a) 10.8m/s10.8m/s size 12{"10" "." 8" m/s"} {}

(b)

Line graph of position in meters versus time in seconds. The line begins at the origin and is concave up, with its slope increasing over time.
Figure 2.72
21.

38.9 m/s (about 87 miles per hour)

23.

(a) 16.5 s16.5 s size 12{`"16" "." "5 s"} {}

(b) 13.5 s13.5 s size 12{"13" "." "5 s"} {}

(c) 2.68 m/s22.68 m/s2 size 12{` - 2 "." "68 m/s" rSup { size 8{2} } } {}

25.

(a) 20.0 m20.0 m size 12{"20" "." "0 m"} {}

(b) 1.00 m/s1.00 m/s size 12{ - 1 "." "00"`"m/s"} {}

(c) This result does not really make sense. If the runner starts at 9.00 m/s and decelerates at 2.00 m/s22.00 m/s2 size 12{2 "." "00 m/s" rSup { size 8{2} } } {}, then she will have stopped after 4.50 s. If she continues to decelerate, she will be running backwards.

27.

0 . 799 m 0 . 799 m size 12{0 "." "799 m"} {}

29.

(a) 28.0 m/s28.0 m/s size 12{"28" "." "0 m/s"} {}

(b) 50.9 s50.9 s size 12{"50" "." "9 s"} {}

(c) 7.68 km to accelerate and 713 m to decelerate

31.

(a) 51.4m51.4m size 12{51 "." 4" m"} {}

(b) 17.1 s17.1 s size 12{"17" "." "1 s"} {}

33.

(a) 80.4m/s280.4m/s2 size 12{ - "80" "." 4" m/s" rSup { size 8{2} } } {}

(b) 9.33×102 s9.33×102 s size 12{9 "." "33" times "10" rSup { size 8{ - 2} } " s"} {}

35.

(a) 7.7 m/s7.7 m/s size 12{7 "." "7 m/s"} {}

(b) 15×102m/s215×102m/s2 size 12{ - "15" times "10" rSup { size 8{2} } " m/s" rSup { size 8{2} } } {}. This is about 3 times the deceleration of the pilots, who were falling from thousands of meters high!

37.

(a) 32.6 m/s232.6 m/s2 size 12{"32" "." "6 m/s" rSup { size 8{2} } } {}

(b) 162 m/s162 m/s size 12{"162 m/s"} {}

(c) v>vmaxv>vmax size 12{v>v rSub { size 8{"max"} } } {}, because the assumption of constant acceleration is not valid for a dragster. A dragster changes gears, and would have a greater acceleration in first gear than second gear than third gear, etc. The acceleration would be greatest at the beginning, so it would not be accelerating at 32.6 m/s232.6 m/s2 size 12{"32" "." "6 m/s" rSup { size 8{2} } } {} during the last few meters, but substantially less, and the final velocity would be less than 162 m/s.

39.

104 s

40.

(a) v=12.2 m/sv=12.2 m/s size 12{v="12" "." "2 m/s"} {}; a=4.07 m/s2a=4.07 m/s2 size 12{a=4 "." "06 m/s" rSup { size 8{2} } } {}

(b) v=11.2 m/sv=11.2 m/s size 12{v="11" "." "2 m/s"} {}

41.

(a) y1=6.28 my1=6.28 m size 12{y rSub { size 8{1} } =6 "." "28 m"} {}; v1=10.1 m/sv1=10.1 m/s size 12{v rSub { size 8{1} } ="10" "." "1 m/s"} {}

(b) y2=10.1 my2=10.1 m size 12{y rSub { size 8{2} } ="10" "." "1 m"} {}; v2=5.20 m/sv2=5.20 m/s size 12{v rSub { size 8{2} } =5 "." "20 m/s"} {}

(c) y3=11.5 my3=11.5 m; v3=0.300 m/sv3=0.300 m/s size 12{v rSub { size 8{3} } =0 "." "300"" m/s"} {}

(d) y4=10.4 my4=10.4 m; v4=4.60 m/sv4=4.60 m/s size 12{v rSub { size 8{4} } = - 4 "." "60"" m/s"} {}

43.

v 0 = 4 . 95 m/s v 0 = 4 . 95 m/s size 12{v rSub { size 8{0} } =4 "." "95 m/s"} {}

45.

(a) a=9.80 m/s2a=9.80 m/s2 size 12{a= - 9 "." "80 m/s" rSup { size 8{2} } } {}; v0=13.0 m/sv0=13.0 m/s size 12{v rSub { size 8{0} } ="13" "." "0 m/s"} {}; y0=0 my0=0 m size 12{y rSub { size 8{0} } ="0 m"} {}

(b) v=0m/sv=0m/s. Unknown is distance yy to top of trajectory, where velocity is zero. Use equation v2=v02+2ayy0v2=v02+2ayy0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (y - y rSub { size 8{0} } right )} {} because it contains all known values except for yy, so we can solve for yy size 12{y} {}. Solving for yy size 12{y} {} gives

v 2 v 0 2 = 2a y y 0 v 2 v 0 2 2a = y y 0 y = y 0 + v 2 v 0 2 2a = 0 m + 0 m/s 2 13.0 m/s 2 2 9.80 m /s 2 = 8.62 m v 2 v 0 2 = 2a y y 0 v 2 v 0 2 2a = y y 0 y = y 0 + v 2 v 0 2 2a = 0 m + 0 m/s 2 13.0 m/s 2 2 9.80 m /s 2 = 8.62 m

Dolphins measure about 2 meters long and can jump several times their length out of the water, so this is a reasonable result.

(c) 2.65 s2.65 s size 12{2 "." "65 s"} {}

47.
Path of a rock being thrown off of cliff. The rock moves up from the cliff top, reaches a transition point, and then falls down to the ground.
Figure 2.73

(a) 8.26 m

(b) 0.717 s

49.

1.91 s

51.

(a) 94.0 m

(b) 3.13 s

53.

(a) -70.0 m/s (downward)

(b) 6.10 s

55.

(a) 19.6 m19.6 m size 12{"19" "." "6 m"} {}

(b) 18.5 m18.5 m size 12{"18" "." "5 m"} {}

57.

(a) 305 m

(b) 262 m, -29.2 m/s

(c) 8.91 s

59.

(a) 115 m/s115 m/s size 12{"115 m/s"} {}

(b) 5.0 m/s25.0 m/s2 size 12{5 "." "0 m/s" rSup { size 8{2} } } {}

61.

v = ( 11.7 6.95 ) × 10 3 m ( 40 . 0 – 20 .0 ) s = 238 m/s v = ( 11.7 6.95 ) × 10 3 m ( 40 . 0 – 20 .0 ) s = 238 m/s

63.
Line graph of position versus time. Line begins with a slight positive slope. It then kinks to a much greater positive slope.
Figure 2.78
65.

(a) 6 m/s

(b) 12 m/s

(c) 3 m/s23 m/s2 size 12{"3 m/s" rSup { size 8{2} } } {}

(d) 10 s

Test Prep for AP® Courses

1.

(a)

3.
  1. Use tape to mark off two distances on the track — one for cart A before the collision and one for the combined carts after the collision. Push cart A to give it an initial speed. Use a stopwatch to measure the time it takes for the cart(s) to cross the marked distances. The speeds are the distances divided by the times.
  2. If the measurement errors are of the same magnitude, they will have a greater effect after the collision. The speed of the combined carts will be less than the initial speed of cart A. As a result, these errors will be a greater percentage of the actual velocity value after the collision occurs. (Note: Other arguments could properly be made for ‘more error before the collision' and error that ‘equally affects both sets of measurement.')
5.

The position vs. time graph should be represented with a positively sloped line whose slope steadily decreases to zero. The y-intercept of the graph may be any value. The line on the velocity vs. time graph should have a positive y-intercept and a negative slope. Because the final velocity of the book is zero, the line should finish on the x-axis.

The position vs. time graph should be represented with a negatively sloped line whose slope steadily decreases to zero. The y-intercept of the graph may be any value. The line on the velocity vs. time graph should have a negative y-intercept and a positive slope. Because the final velocity of the book is zero, the line should finish on the x-axis.]

7.

(c)

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.