Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Connection for AP® Courses

College Physics for AP® CoursesConnection for AP® Courses

The image shows a woman preparing for scanning of a child mummy with a cylindrical instrument.
Figure 32.1 Tori Randall, Ph.D., curator for the Department of Physical Anthropology at the San Diego Museum of Man, prepares a 550-year-old Peruvian child mummy for a CT scan at Naval Medical Center San Diego. (credit: U.S. Navy photo by Mass Communication Specialist 3rd Class Samantha A. Lewis)

Applications of nuclear physics have become an integral part of modern life. From a bone scan that detects a cancer to a radioiodine treatment that cures another, nuclear radiation has many diagnostic and therapeutic applications in medicine. In addition nuclear radiation is used in other useful scanning applications, as seen in Figure 32.2 and Figure 32.3. The fission power reactor and the hope of controlled fusion have made nuclear energy a part of our plans for the future. That said, the destructive potential of nuclear weapons haunts us, as does the possibility of nuclear reactor accidents.

The picture shows a series of trucks headed in one direction. A truck pointed in the opposite direction has a crane with a device over the middle truck.
Figure 32.2 Customs officers can use gamma ray-, x-ray-, or neutron-scanning devices to reveal the contents of trucks and cars. (credit: Gerald L. Nino, CBP, U.S. Dept. of Homeland Security).
This picture shows an image that shows items inside of a semi trailer. It appears as if there is an image of one person standing and another person sitting inside the truck.
Figure 32.3 This image was obtained using gamma-ray radiography and shows two stowaways caught illegally entering the United States from Canada. (credit: U.S. Customs and Border Protection).

Nuclear physics revealed many secrets of nature, but full exploitation of the technology remains controversial as it is intertwined with human values. Because of its great potential for alleviation of suffering and its power as a giant-scale destroyer of life, nuclear physics is typically viewed with ambivalence. Nuclear physics is a classic example of the truism that applications of technology can be good or evil, but knowledge itself is neither.

This chapter focuses on medical applications of nuclear physics. The sections on fusion and fission address the ideas that objects and systems have properties, such as mass (Big Idea 1), and that interactions between systems can result in changes in those systems (Big Idea 4). The changes that occur as a result of interactions always satisfy conservation laws (Big Idea 5). The mass conservation (Enduring Understanding 1.C) and energy conservation (Enduring Understanding 5.B) are replaced by the law of conservation of mass-energy.

In nuclear fusion and fission reactions, so much potential energy is lost that the mass of the products of a reaction are measurably less than the mass of the reactants (Essential Knowledge 1.C.4, Essential Knowledge 4.C.4) in accordance with the equation E=m c 2 E=m c 2 . This equation explains that mass is part of the internal energy of an object or system (Essential Knowledge 5.B.11). In addition, the number of nucleons is conserved in these nuclear reactions (Enduring Understanding 5.G), and that determines which nuclear reactions are possible (Essential Knowledge 5.G.1).

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.C Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles.

Essential Knowledge 1.C.4 In certain processes, mass can be converted to energy and energy can be converted to mass according to E=m c 2 E=m c 2 , the equation derived from the theory of special relativity.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.C Interactions with other objects or systems can change the total energy of a system.

Essential Knowledge 4.C.4 Mass can be converted into energy and energy can be converted into mass.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.11 Beyond the classical approximation, mass is actually part of the internal energy of an object or system with E=m c 2 E=m c 2 .

Enduring Understanding 5.G Nucleon number is conserved.

Essential Knowledge 5.G.1 The possible nuclear reactions are constrained by the law of conservation of nucleon number.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.