Skip to Content
OpenStax Logo
College Physics for AP® Courses

27.4 Multiple Slit Diffraction

College Physics for AP® Courses27.4 Multiple Slit Diffraction
Buy book
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Connection for AP® Courses
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Connection for AP® Courses
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  4. 3 Two-Dimensional Kinematics
    1. Connection for AP® Courses
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
    11. Test Prep for AP® Courses
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Connection for AP® Courses
    2. 4.1 Development of Force Concept
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion: Concept of a System
    5. 4.4 Newton's Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Force
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton's Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Connection for AP® Courses
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
    9. Test Prep for AP® Courses
  7. 6 Gravitation and Uniform Circular Motion
    1. Connection for AP® Courses
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton's Universal Law of Gravitation
    7. 6.6 Satellites and Kepler's Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  8. 7 Work, Energy, and Energy Resources
    1. Connection for AP® Courses
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  9. 8 Linear Momentum and Collisions
    1. Connection for AP® courses
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  10. 9 Statics and Torque
    1. Connection for AP® Courses
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  11. 10 Rotational Motion and Angular Momentum
    1. Connection for AP® Courses
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  12. 11 Fluid Statics
    1. Connection for AP® Courses
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Connection for AP® Courses
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Connection for AP® Courses
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  15. 14 Heat and Heat Transfer Methods
    1. Connection for AP® Courses
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  16. 15 Thermodynamics
    1. Connection for AP® Courses
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  17. 16 Oscillatory Motion and Waves
    1. Connection for AP® Courses
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  18. 17 Physics of Hearing
    1. Connection for AP® Courses
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  19. 18 Electric Charge and Electric Field
    1. Connection for AP® Courses
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Conductors and Electric Fields in Static Equilibrium
    5. 18.4 Coulomb’s Law
    6. 18.5 Electric Field: Concept of a Field Revisited
    7. 18.6 Electric Field Lines: Multiple Charges
    8. 18.7 Electric Forces in Biology
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  20. 19 Electric Potential and Electric Field
    1. Connection for AP® Courses
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Connection for AP® Courses
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  22. 21 Circuits, Bioelectricity, and DC Instruments
    1. Connection for AP® Courses
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  23. 22 Magnetism
    1. Connection for AP® Courses
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Connection for AP® Courses
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
    18. Test Prep for AP® Courses
  25. 24 Electromagnetic Waves
    1. Connection for AP® Courses
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
    10. Test Prep for AP® Courses
  26. 25 Geometric Optics
    1. Connection for AP® Courses
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  27. 26 Vision and Optical Instruments
    1. Connection for AP® Courses
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  28. 27 Wave Optics
    1. Connection for AP® Courses
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  29. 28 Special Relativity
    1. Connection for AP® Courses
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  30. 29 Introduction to Quantum Physics
    1. Connection for AP® Courses
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  31. 30 Atomic Physics
    1. Connection for AP® Courses
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  32. 31 Radioactivity and Nuclear Physics
    1. Connection for AP® Courses
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  33. 32 Medical Applications of Nuclear Physics
    1. Connection for AP® Courses
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  34. 33 Particle Physics
    1. Connection for AP® Courses
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  35. 34 Frontiers of Physics
    1. Connection for AP® Courses
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-Temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
    32. Chapter 32
    33. Chapter 33
    34. Chapter 34
  41. Index

Learning Objectives

By the end of this section, you will be able to:

  • Discuss the pattern obtained from diffraction grating.
  • Explain diffraction grating effects.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 6.C.3.1 The student is able to qualitatively apply the wave model to quantities that describe the generation of interference patterns to make predictions about interference patterns that form when waves pass through a set of openings whose spacing and widths are small, but larger than the wavelength. (S.P. 1.4, 6.4)

An interesting thing happens if you pass light through a large number of evenly spaced parallel slits, called a diffraction grating. An interference pattern is created that is very similar to the one formed by a double slit (see Figure 27.16). A diffraction grating can be manufactured by scratching glass with a sharp tool in a number of precisely positioned parallel lines, with the untouched regions acting like slits. These can be photographically mass produced rather cheaply. Diffraction gratings work both for transmission of light, as in Figure 27.16, and for reflection of light, as on butterfly wings and the Australian opal in Figure 27.17 or the CD pictured in the opening photograph of this chapter, Figure 27.1. In addition to their use as novelty items, diffraction gratings are commonly used for spectroscopic dispersion and analysis of light. What makes them particularly useful is the fact that they form a sharper pattern than double slits do. That is, their bright regions are narrower and brighter, while their dark regions are darker. Figure 27.18 shows idealized graphs demonstrating the sharper pattern. Natural diffraction gratings occur in the feathers of certain birds. Tiny, finger-like structures in regular patterns act as reflection gratings, producing constructive interference that gives the feathers colors not solely due to their pigmentation. This is called iridescence.

On the left side of the figure is a diffraction grating represented by a vertical bar with five horizontal slits cut through it. A single horizontal arrow, representing white light, points at the center slit from the left side. On the right side, five arrows spread symmetrically above and below the horizontal centerline. The arrow that is on the horizontal centerline points at a white block labeled central white. The first arrows above and below the centerline point to rainbow-colored blocks labeled first-order rainbow. The second arrows above and below the centerline point to slightly faded rainbow-colored blocks that are labeled second-order rainbow.
Figure 27.16 A diffraction grating is a large number of evenly spaced parallel slits. (a) Light passing through is diffracted in a pattern similar to a double slit, with bright regions at various angles. (b) The pattern obtained for white light incident on a grating. The central maximum is white, and the higher-order maxima disperse white light into a rainbow of colors.
Colorful photos of an Australian opal and a butterfly. The opal is full of fiery reds and yellows and deep blues and purples. The butterfly has its yellow wings spread and you can see its characteristic red, blue, and black spots and fringing.
Figure 27.17 (a) This Australian opal and (b) the butterfly wings have rows of reflectors that act like reflection gratings, reflecting different colors at different angles. (credits: (a) Opals-On-Black.com, via Flickr (b) whologwhy, Flickr)
The upper graph, which is labeled double slit, shows a smooth curve similar to a sine curve that is shifted up so that its minimum value is zero. Three peaks are shown: the middle peak is labeled m equals zero and the left and right peaks are labeled m equals one. The lower graph, which is labeled grating, is aligned under the upper graph and also shows three peaks, with each peak aligned directly underneath the peaks in the upper graph. These three peaks are also labeled m equals zero or one, as in the upper graph. However, the peaks in the lower graph are much narrower and there are lots of small peaks appearing between large peaks.
Figure 27.18 Idealized graphs of the intensity of light passing through a double slit (a) and a diffraction grating (b) for monochromatic light. Maxima can be produced at the same angles, but those for the diffraction grating are narrower and hence sharper. The maxima become narrower and the regions between darker as the number of slits is increased.

The analysis of a diffraction grating is very similar to that for a double slit (see Figure 27.19). As we know from our discussion of double slits in Young's Double Slit Experiment, light is diffracted by each slit and spreads out after passing through. Rays traveling in the same direction (at an angle θθ size 12{θ} {} relative to the incident direction) are shown in the figure. Each of these rays travels a different distance to a common point on a screen far away. The rays start in phase, and they can be in or out of phase when they reach a screen, depending on the difference in the path lengths traveled. As seen in the figure, each ray travels a distance dsinθdsinθ size 12{d`"sin"θ} {} different from that of its neighbor, where dd size 12{d} {} is the distance between slits. If this distance equals an integral number of wavelengths, the rays all arrive in phase, and constructive interference (a maximum) is obtained. Thus, the condition necessary to obtain constructive interference for a diffraction grating is

dsinθ=,form=0,1,–1,2,–2, (constructive),dsinθ=,form=0,1,–1,2,–2, (constructive), size 12{d"sin"θ=mλ,~m="0,"`"1,"`"2,"` dotslow } {}
27.11

where dd size 12{d} {} is the distance between slits in the grating, λλ size 12{λ} {} is the wavelength of light, and mm size 12{m} {} is the order of the maximum. Note that this is exactly the same equation as for double slits separated by dd size 12{d} {}. However, the slits are usually closer in diffraction gratings than in double slits, producing fewer maxima at larger angles.

The figure shows a schematic of a diffraction grating, which is represented by a vertical black line into which are cut five small gaps. The gaps are evenly spaced a distance d apart. From the left five rays arrive, with one ray arriving at each gap. To the right of the line with the gaps the rays all point down and to the right at an angle theta below the horizontal. At each gap a triangle is formed where the hypotenuse is length d, one angle is theta, and the side opposite theta is labeled delta l. At the top is written delta l equals d sine theta.
Figure 27.19 Diffraction grating showing light rays from each slit traveling in the same direction. Each ray travels a different distance to reach a common point on a screen (not shown). Each ray travels a distance dsinθdsinθ size 12{d`"sin"θ} {} different from that of its neighbor.

Where are diffraction gratings used? Diffraction gratings are key components of monochromators used, for example, in optical imaging of particular wavelengths from biological or medical samples. A diffraction grating can be chosen to specifically analyze a wavelength emitted by molecules in diseased cells in a biopsy sample or to help excite strategic molecules in the sample with a selected frequency of light. Another vital use is in optical fiber technologies where fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction gratings are available for selecting specific wavelengths for such use.

Take-Home Experiment: Rainbows on a CD

The spacing dd size 12{d} {} of the grooves in a CD or DVD can be well determined by using a laser and the equation dsinθ=,form=0,1,–1,2,–2,dsinθ=,form=0,1,–1,2,–2, size 12{d"sin"θ=mλ,`m="0,"`"1,"`"2,"` dotslow } {}. However, we can still make a good estimate of this spacing by using white light and the rainbow of colors that comes from the interference. Reflect sunlight from a CD onto a wall and use your best judgment of the location of a strongly diffracted color to find the separation dd size 12{d} {}.

Example 27.3 Calculating Typical Diffraction Grating Effects

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction of the shortest and longest wavelengths of visible light (380 and 760 nm). (b) What is the distance between the ends of the rainbow of visible light produced on the screen for first-order interference? (See Figure 27.20.)

The image shows a vertical black bar at the left labeled grating. From the midpoint of this bar four lines fan out to the right, with two lines angled above the horizontal centerline and two lines angled symmetrically below the horizontal centerline. These four lines hit a vertical black line to the right that is labeled screen. On the screen between the two upper lines is a rainbow region, with violet nearer the centerline and red farther from the centerline. The same is true for the two lower lines, except that they are below the centerline instead of above. The distance from the centerline to the upper violet zone is labeled y sub v equals question mark and the distance from the centerline to the upper red zone is labeled y sub r equals question mark. The angle between the centerline and the line leading to the upper violet zone is labeled theta V equals question mark and the angle between the line leading to the upper red zone is labeled theta R equals question mark. The distance between the grating and the screen is labeled x equals two point zero zero meters.
Figure 27.20 The diffraction grating considered in this example produces a rainbow of colors on a screen a distance x=2.00mx=2.00m size 12{x=2 "." "00"`m} {} from the grating. The distances along the screen are measured perpendicular to the xx size 12{x} {}-direction. In other words, the rainbow pattern extends out of the page.

Strategy

The angles can be found using the equation

dsinθ=(form=0,1,–1,2,–2,…)dsinθ=(form=0,1,–1,2,–2,…) size 12{d"sin"θ=mλ,`m="0,"`"1,"`"2,"` dotslow } {}
27.12

once a value for the slit spacing dd size 12{d} {} has been determined. Since there are 10,000 lines per centimeter, each line is separated by 1/10,0001/10,000 of a centimeter. Once the angles are found, the distances along the screen can be found using simple trigonometry.

Solution for (a)

The distance between slits is d=(1 cm)/10,000=1.00×104cmd=(1 cm)/10,000=1.00×104cm size 12{d= \( 1`"cm" \) /"10","000"=1 "." "00" times "10" rSup { size 8{ - 4} } `"cm"} {} or 1.00×106m1.00×106m size 12{1 "." "00" times "10" rSup { size 8{ - 6} } `m} {}. Let us call the two angles θVθV size 12{θ rSub { size 8{V} } } {} for violet (380 nm) and θRθR size 12{θ rSub { size 8{R} } } {} for red (760 nm). Solving the equation dsinθV=dsinθV= size 12{d"sin"θ rSub { size 8{V} } =mλ} {} for sinθVsinθV size 12{"sin"θ rSub { size 8{V} } } {},

sin θ V = V d , sin θ V = V d , size 12{"sin"θ rSub { size 8{V} } = { {mλ rSub { size 8{V} } } over {d} } ,} {}
27.13

where m=1m=1 size 12{m=1} {} for first order and λV=380nm=3.80×107mλV=380nm=3.80×107m size 12{λ rSub { size 8{V} } ="380"`"nm"=3 "." "80" times "10" rSup { size 8{ - 7} } `m} {}. Substituting these values gives

sinθV=3.80×107m1.00×106m=0.380.sinθV=3.80×107m1.00×106m=0.380. size 12{"sin"θ rSub { size 8{V} } = { {3 "." "80" times "10" rSup { size 8{ - 7} } `m} over {1 "." "00" times "10" rSup { size 8{ - 6} } `m} } =0 "." "380"} {}
27.14

Thus the angle θVθV size 12{θ rSub { size 8{V} } } {} is

θV=sin10.380=22.33º.θV=sin10.380=22.33º. size 12{θ rSub { size 8{V} } ="sin" rSup { size 8{ - 1} } 0 "." "380"="22" "." 3°} {}
27.15

Similarly,

sinθR=7.60×107m1.00×106m.sinθR=7.60×107m1.00×106m. size 12{"sin"θ rSub { size 8{R} } = { {7 "." "60" times "10" rSup { size 8{ - 7} } `m} over {1 "." "00" times "10" rSup { size 8{ - 6} } `m} } } {}
27.16

Thus the angle θRθR size 12{θ rSub { size 8{R} } } {} is

θR=sin10.760=49.46º.θR=sin10.760=49.46º. size 12{θ rSub { size 8{R} } ="sin" rSup { size 8{ - 1} } 0 "." "760"="49" "." 5°} {}
27.17

Notice that in both equations, we reported the results of these intermediate calculations to four significant figures to use with the calculation in part (b).

Solution for (b)

The distances on the screen are labeled yVyV size 12{y rSub { size 8{V} } } {} and yRyR size 12{y rSub { size 8{R} } } {} in Figure 27.20. Noting that tanθ=y/xtanθ=y/x size 12{"tan"θ=y/x} {}, we can solve for yVyV size 12{y rSub { size 8{V} } } {} and yRyR size 12{y rSub { size 8{R} } } {}. That is,

y V = x tan θ V = ( 2.00 m ) ( tan 22.33º ) = 0.815 m y V = x tan θ V = ( 2.00 m ) ( tan 22.33º ) = 0.815 m size 12{y rSub { size 8{V} } =x"tan"θ rSub { size 8{V} } = \( 2 "." "00"`m \) \( "tan""22" "." 3° \) =0 "." "822"`m} {}
27.18

and

yR=xtanθR=(2.00 m)(tan 49.46º)=2.338 m.yR=xtanθR=(2.00 m)(tan 49.46º)=2.338 m. size 12{y rSub { size 8{R} } =x"tan"θ rSub { size 8{R} } = \( 2 "." "00"`m \) \( "tan""49" "." 5° \) =2 "." "339"`m} {}
27.19

The distance between them is therefore

yRyV=1.52 m.yRyV=1.52 m. size 12{y rSub { size 8{R} } - y rSub { size 8{V} } =1 "." 52`m} {}
27.20

Discussion

The large distance between the red and violet ends of the rainbow produced from the white light indicates the potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction grating—it must be very precisely made in addition to having closely spaced lines.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Aug 12, 2015 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.