Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Connection for AP® Courses

College Physics for AP® CoursesConnection for AP® Courses

Wind turbine with three blades moored in shallow water.
Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr)

Nature’s displays of symmetry are beautiful and alluring. As shown in Figure 23.2, a butterfly’s wings exhibit an appealing symmetry in a complex system. The laws of physics display symmetries at the most basic level – these symmetries are a source of wonder and imply deeper meaning. Since we place a high value on symmetry, we look for it when we explore nature. The remarkable thing is that we find it.

Photograph of a butterfly with its wings spread out symmetrically is shown to rest on a bunch of flowers.
Figure 23.2 A butterfly with symmetrically patterned wings is resting on a flower. Physics, like this butterfly, has inherent symmetries. (credit: Thomas Bresson).

This chapter supports Big Idea 4, illustrating how electric and magnetic changes can take place in a system due to interactions with other systems. The hint of symmetry between electricity and magnetism found in the preceding chapter will be elaborated upon in this chapter. Specifically, we know that a current creates a magnetic field. If nature is symmetric in this case, then perhaps a magnetic field can create a current. Historically, it was very shortly after Oersted discovered that currents cause magnetic fields that other scientists asked the following question: Can magnetic fields cause currents? The answer was soon found by experiment to be yes. In 1831, some 12 years after Oersted’s discovery, the English scientist Michael Faraday (1791–1862) and the American scientist Joseph Henry (1797–1878) independently demonstrated that magnetic fields can produce currents. The basic process of generating emfs (electromotive forces), and hence currents, with magnetic fields is known as induction; this process is also called “magnetic induction” to distinguish it from charging by induction, which utilizes the Coulomb force.

Today, currents induced by magnetic fields are essential to our technological society. The ubiquitous generator – found in automobiles, on bicycles, in nuclear power plants, and so on – uses magnetism to generate current. Other devices that use magnetism to induce currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport security gates, and damping mechanisms on sensitive chemical balances. Explanations and examples in this chapter will help you understand current induction via magnetic interactions in mechanical systems (Enduring Understanding 4.E, Essential Knowledge 4.E.2). You will also learn how the behavior of AC circuits depends strongly on the effect of magnetic fields on currents.

The content of this chapter supports:

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or changes in, other objects or systems.

Essential Knowledge 4.E.2 Changing magnetic flux induces an electric field that can establish an induced emf in a system.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.