Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

16.5 Energy and the Simple Harmonic Oscillator

College Physics for AP® Courses16.5 Energy and the Simple Harmonic Oscillator

Learning Objectives

By the end of this section, you will be able to:

  • Describe the changes in energy that occur while a system undergoes simple harmonic motion.

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have We know from Hooke’s Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential energy given by:

PE el = 1 2 kx 2 . PE el = 1 2 kx 2 . size 12{"PE" size 8{"el"}= { {1} over {2} } ital "kx" rSup { size 8{2} } } {}
16.33

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy KEKE size 12{ ital "KE"} {}. Conservation of energy for these two forms is:

KE + PE el = constant KE + PE el = constant size 12{ ital "KE"+ ital "PE" rSub { size 8{e1} } ="constant"} {}
16.34

or

1 2 mv 2 + 1 2 kx 2 = constant. 1 2 mv 2 + 1 2 kx 2 = constant. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } ="constant"} {}
16.35

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force plays a role

Namely, for a simple pendulum we replace the velocity with v=v= size 12{v=Lω} {}, the spring constant with k=mg/Lk=mg/L size 12{k= ital "mg"/L} {}, and the displacement term with x=x= size 12{x=Lθ} {}. Thus

1 2 mL 2 ω 2 + 1 2 mgL θ 2 = constant. 1 2 mL 2 ω 2 + 1 2 mgL θ 2 = constant. size 12{ { {1} over {2} } ital "mL" rSup { size 8{2} } ω rSup { size 8{2} } + { {1} over {2} } ital "mgL"θ rSup { size 8{2} } ="constant"} {}
16.36

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached to a spring, as shown again in Figure 16.16, the motion starts with all of the energy stored in the spring. As the object starts to move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium position. It is then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy is completely converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion, such as alternating current circuits.

Figure a shows a spring on a frictionless surface attached to a bar or wall from the left side, and on the right side of it there’s an object attached to it with mass m, its amplitude is given by X, and x equal to zero at the equilibrium level. Force F is applied to it from the right side, shown with left direction pointed red arrow and velocity v is equal to zero. A direction point showing the north and west direction is also given alongside this figure as well as with other four figures. The energy given here for the object is given according to the velocity. In figure b, after the force has been applied, the object moves to the left compressing the spring a bit, and the displaced area of the object from its initial point is shown in sketched dots. F is equal to zero and the V is max in negative direction. The energy given here for the object is given according to the velocity. In figure c, the spring has been compressed to the maximum level, and the amplitude is negative x. Now the direction of force changes to the rightward direction, shown with right direction pointed red arrow and the velocity v zero. The energy given here for the object is given according to the velocity.                In figure d, the spring is shown released from the compressed level and the object has moved toward the right side up to the equilibrium level. F is zero, and the velocity v is maximum. The energy given here for the object is given according to the velocity.               In figure e, the spring has been stretched loose to the maximum level and the object has moved to the far right. Now again the velocity here is equal to zero and the direction of force again is to the left hand side, shown here as F is equal to zero. The energy given here for the object is given according to the velocity.
Figure 16.16 The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity vv size 12{v} {}. If we start our simple harmonic motion with zero velocity and maximum displacement (x=Xx=X size 12{x=X} {}), then the total energy is

12kX2.12kX2. size 12{ { {1} over {2} } ital "kX" rSup { size 8{2} } } {}
16.37

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being shared by each. The conservation of energy for this system in equation form is thus:

1 2 mv 2 + 1 2 kx 2 = 1 2 kX 2 . 1 2 mv 2 + 1 2 kx 2 = 1 2 kX 2 . size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } = { {1} over {2} } ital "kX" rSup { size 8{2} } } {}
16.38

Solving this equation for vv size 12{v} {} yields:

v = ± k m X 2 x 2 . v = ± k m X 2 x 2 . size 12{v= +- sqrt { { {k} over {m} } left (X rSup { size 8{2} } - x rSup { size 8{2} } right )} } {}
16.39

Manipulating this expression algebraically gives:

v = ± k m X 1 x 2 X 2 v = ± k m X 1 x 2 X 2 size 12{v= +- sqrt { { {k} over {m} } } X sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}
16.40

and so

v = ± v max 1 x 2 X 2 , v = ± v max 1 x 2 X 2 , size 12{v= +- v size 8{"max" sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } }} {}
16.41

where

v max = k m X . v max = k m X . size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {}
16.42

From this expression, we see that the velocity is a maximum (vmaxvmax) at x=0x=0 size 12{x=0} {}, as stated earlier in vt=vmaxsintTvt=vmaxsintT. Notice that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might guess, the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer systems, because they exert greater force for the same displacement. This observation is seen in the expression for vmax;vmax; it is proportional to the square root of the force constant kk. Finally, the maximum velocity is smaller for objects that have larger masses, because the maximum velocity is inversely proportional to the square root of mm. For a given force, objects that have large masses accelerate more slowly.

A similar calculation for the simple pendulum produces a similar result, namely:

ω max = g L θ max . ω max = g L θ max . size 12{ω rSub { size 8{"max"} } = sqrt { { {g} over {L} } } θ rSub { size 8{"max"} } } {}
16.43

Making Connections: Mass Attached to a Spring

Consider a mass m attached to a spring, with spring constant k, fixed to a wall. When the mass is displaced from its equilibrium position and released, the mass undergoes simple harmonic motion. The spring exerts a force F=kv F=kv on the mass. The potential energy of the system is stored in the spring. It will be zero when the spring is in the equilibrium position. All the internal energy exists in the form of kinetic energy, given by KE= 1 2 m v 2 KE= 1 2 m v 2 . As the system oscillates, which means that the spring compresses and expands, there is a change in the structure of the system and a corresponding change in its internal energy. Its kinetic energy is converted to potential energy and vice versa. This occurs at an equal rate, which means that a loss of kinetic energy yields a gain in potential energy, thus preserving the work-energy theorem and the law of conservation of energy.

Example 16.7

Determine the Maximum Speed of an Oscillating System: A Bumpy Road

Suppose that a car is 900 kg and has a suspension system that has a force constant k=6.53×104N/mk=6.53×104N/m size 12{k=6 "." "53" times "10" rSup { size 8{4} } `"N/m"} {}. The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for vmaxvmax size 12{v rSub { size 8{"max"} } } {} given in vmax=kmXvmax=kmX size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {} to determine the maximum vertical velocity. The variables mm size 12{m} {} and kk size 12{k} {} are given in the problem statement, and the maximum displacement XX size 12{X} {} is 0.100 m.

Solution

  1. Identify known.
  2. Substitute known values into vmax=kmXvmax=kmX size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {}:
    v max = 6 . 53 × 10 4 N/m 900 kg (0 . 100 m) . v max = 6 . 53 × 10 4 N/m 900 kg (0 . 100 m) . size 12{v size 8{"max"}= sqrt { { {6 "." "53" times "10" rSup { size 8{4} } "N/m"} over {"900"" kg"} } } 0 "." "100"" m"} {}
    16.44
  3. Calculate to find vmax= 0.852 m/s.vmax= 0.852 m/s. size 12{v rSub { size 8{"max"} } } {}

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find vmaxvmax size 12{v rSub { size 8{"max"} } } {}. We could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited.

The small vertical displacement yy size 12{v rSub { size 8{"max"} } } {} of an oscillating simple pendulum, starting from its equilibrium position, is given as

y ( t ) = a sin ωt , y ( t ) = a sin ωt , size 12{y \( t \) =a"sin"ωt} {}
16.45

where aa size 12{a} {} is the amplitude, ωω size 12{ω} {} is the angular velocity and tt size 12{t} {} is the time taken. Substituting ω=Tω=T size 12{ω= { {2π} over {T} } } {}, we have

y t = a sin t T . y t = a sin t T . size 12{y left (t right )=a"sin" left ( { {2πt} over {T} } right )} {}
16.46

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

v ( t ) = 2 T cos t T , v ( t ) = 2 T cos t T , size 12{v \( t \) = { {2aπ} over {T} } "cos" left ( { {2πt} over {T} } right )} {}
16.47

so the motion of the pendulum is a function of time.

Check Your Understanding

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system is equal?

Check Your Understanding

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.