Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses 2e

33.6 GUTs: The Unification of Forces

College Physics for AP® Courses 2e33.6 GUTs: The Unification of Forces

Learning Objectives

By the end of this section, you will be able to:

  • State the grand unified theory.
  • Explain the electroweak theory.
  • Define gluons.
  • Describe the principle of quantum chromodynamics.
  • Define the standard model.

Present quests to show that the four basic forces are different manifestations of a single unified force follow a long tradition. In the 19th century, the distinct electric and magnetic forces were shown to be intimately connected and are now collectively called the electromagnetic force. More recently, the weak nuclear force has been shown to be connected to the electromagnetic force in a manner suggesting that a theory may be constructed in which all four forces are unified. Certainly, there are similarities in how forces are transmitted by the exchange of carrier particles, and the carrier particles themselves (the gauge bosons in Table 33.2) are also similar in important ways. The analogy to the unification of electric and magnetic forces is quite good—the four forces are distinct under normal circumstances, but there are hints of connections even on the atomic scale, and there may be conditions under which the forces are intimately related and even indistinguishable. The search for a correct theory linking the forces, called the Grand Unified Theory (GUT), is explored in this section in the realm of particle physics. Frontiers of Physics expands the story in making a connection with cosmology, on the opposite end of the distance scale.

Figure 33.21 is a Feynman diagram showing how the weak nuclear force is transmitted by the carrier particle Z0Z0, similar to the diagrams in Figure 33.5 and Figure 33.6 for the electromagnetic and strong nuclear forces. In the 1960s, a gauge theory, called electroweak theory, was developed by Steven Weinberg, Sheldon Glashow, and Abdus Salam and proposed that the electromagnetic and weak forces are identical at sufficiently high energies. One of its predictions, in addition to describing both electromagnetic and weak force phenomena, was the existence of the W+,WW+,W, and Z0Z0 carrier particles. Not only were three particles having spin 1 predicted, the mass of the W+W+ and WW was predicted to be 81 GeV/c281 GeV/c2, and that of the Z0Z0 was predicted to be 90 GeV/c290 GeV/c2. (Their masses had to be about 1000 times that of the pion, or about 100 GeV/c2100 GeV/c2, since the range of the weak force is about 1000 times less than the strong force carried by virtual pions.) In 1983, these carrier particles were observed at CERN with the predicted characteristics, including masses having the predicted values as seen in Table 33.2. This was another triumph of particle theory and experimental effort, resulting in the 1984 Nobel Prize to the experiment’s group leaders Carlo Rubbia and Simon van der Meer. Theorists Weinberg, Glashow, and Salam had already been honored with the 1979 Nobel Prize for other aspects of electroweak theory.

A Feynman diagram is shown in which time proceeds in along the vertical y axis and distance along the horizontal x axis. An electron and an electron neutrino are shown approaching each other, exchanging a virtual zee zero particle, then moving apart.
Figure 33.21 The exchange of a virtual Z0Z0 carries the weak nuclear force between an electron and a neutrino in this Feynman diagram. The Z0Z0 is one of the carrier particles for the weak nuclear force that has now been created in the laboratory with characteristics predicted by electroweak theory.

Although the weak nuclear force is very short ranged ( < 10 18   m < 10 18   m, as indicated in Table 33.1), its effects on atomic levels can be measured given the extreme precision of modern techniques. Since electrons spend some time in the nucleus, their energies are affected, and spectra can even indicate new aspects of the weak force, such as the possibility of other carrier particles. So systems many orders of magnitude larger than the range of the weak force supply evidence of electroweak unification in addition to evidence found at the particle scale.

Gluons (gg) are the proposed carrier particles for the strong nuclear force, although they are not directly observed. Like quarks, gluons may be confined to systems having a total color of white. Less is known about gluons than the fact that they are the carriers of the weak and certainly of the electromagnetic force. QCD theory calls for eight gluons, all massless and all spin 1. Six of the gluons carry a color and an anticolor, while two do not carry color, as illustrated in Figure 33.22(a). There is indirect evidence of the existence of gluons in nucleons. When high-energy electrons are scattered from nucleons and evidence of quarks is seen, the momenta of the quarks are smaller than they would be if there were no gluons. That means that the gluons carrying force between quarks also carry some momentum, inferred by the already indirect quark momentum measurements. At any rate, the gluons carry color charge and can change the colors of quarks when exchanged, as seen in Figure 33.22(b). In the figure, a red down quark interacts with a green strange quark by sending it a gluon. That gluon carries red away from the down quark and leaves it green, because it is an RG-RG- (red-antigreen) gluon. (Taking antigreen away leaves you green.) Its antigreenness kills the green in the strange quark, and its redness turns the quark red.

The first image shows eight circles representing gluons. The first gluon is colored red and anti green, the second gluon is colored green and anti red, the third gluon is colored blue and anti red, the fourth gluon is colored red and anti blue, the fifth gluon is colored green and anti blue, and the sixth gluon is colored blue and anti green. The last two gluons are white. The second image shows a Feynman diagram in which time proceeds in along the vertical y axis and distance along the horizontal x axis. A red down quark and a green strange quark are approaching each other. They exchange a red and anti green gluon, then move apart, with the red down quark having changed to a green down quark and the green strange quark having changed to a red strange quark.
Figure 33.22 In figure (a), the eight types of gluons that carry the strong nuclear force are divided into a group of six that carry color and a group of two that do not. Figure (b) shows that the exchange of gluons between quarks carries the strong force and may change the color of a quark.

The strong force is complicated, since observable particles that feel the strong force (hadrons) contain multiple quarks. Figure 33.23 shows the quark and gluon details of pion exchange between a proton and a neutron as illustrated earlier in Figure 33.3 and Figure 33.6. The quarks within the proton and neutron move along together exchanging gluons, until the proton and neutron get close together. As the uu quark leaves the proton, a gluon creates a pair of virtual particles, a dd quark and a d-d- antiquark. The dd quark stays behind and the proton turns into a neutron, while the uu and d-d- move together as a π+π+ (Table 33.4 confirms the ud-ud- composition for the π+π+.) The d-d- annihilates a dd quark in the neutron, the uu joins the neutron, and the neutron becomes a proton. A pion is exchanged and a force is transmitted.

The Feynman diagram shows a proton scattering from a neutron. In the process , the proton becomes a neutron and the neutron becomes a proton. The details of the interaction are explained in the text.
Figure 33.23 This Feynman diagram is the same interaction as shown in Figure 33.6, but it shows the quark and gluon details of the strong force interaction.

It is beyond the scope of this text to go into more detail on the types of quark and gluon interactions that underlie the observable particles, but the theory (quantum chromodynamics or QCD) is very self-consistent. So successful have QCD and the electroweak theory been that, taken together, they are called the Standard Model. Advances in knowledge are expected to modify, but not overthrow, the Standard Model of particle physics and forces.

Making Connections: Unification of Forces

Grand Unified Theory (GUT) is successful in describing the four forces as distinct under normal circumstances, but connected in fundamental ways. Experiments have verified that the weak and electromagnetic force become identical at very small distances and provide the GUT description of the carrier particles for the forces. GUT predicts that the other forces become identical under conditions so extreme that they cannot be tested in the laboratory, although there may be lingering evidence of them in the evolution of the universe. GUT is also successful in describing a system of carrier particles for all four forces, but there is much to be done, particularly in the realm of gravity.

How can forces be unified? They are definitely distinct under most circumstances, for example, being carried by different particles and having greatly different strengths. But experiments show that at extremely small distances, the strengths of the forces begin to become more similar. In fact, electroweak theory’s prediction of the W + W + , W - W - , and Z0Z0 carrier particles was based on the strengths of the two forces being identical at extremely small distances as seen in Figure 33.24. As discussed in case of the creation of virtual particles for extremely short times, the small distances or short ranges correspond to the large masses of the carrier particles and the correspondingly large energies needed to create them. Thus, the energy scale on the horizontal axis of Figure 33.24 corresponds to smaller and smaller distances, with 100 GeV corresponding to approximately, 10 - 18 m 10 - 18 m for example. At that distance, the strengths of the EM and weak forces are the same. To test physics at that distance, energies of about 100 GeV must be put into the system, and that is sufficient to create and release the W + W + , W - W - , and Z0Z0 carrier particles. At those and higher energies, the masses of the carrier particles becomes less and less relevant, and the Z0Z0 in particular resembles the massless, chargeless, spin 1 photon. In fact, there is enough energy when things are pushed to even smaller distances to transform the, and Z0Z0 into massless carrier particles more similar to photons and gluons. These have not been observed experimentally, but there is a prediction of an associated particle called the Higgs boson. The mass of this particle is not predicted with nearly the certainty with which the mass of the W+,W,W+,W, and Z0Z0 particles were predicted, but it was hoped that the Higgs boson could be observed at the now-canceled Superconducting Super Collider (SSC). Ongoing experiments at the Large Hadron Collider at CERN have presented some evidence for a Higgs boson with a mass of 125 GeV, and there is a possibility of a direct discovery during 2012. The existence of this more massive particle would give validity to the theory that the carrier particles are identical under certain circumstances.

The figure shows a graph with the strength of four basics forces plotted along the y axis and energy plotted along the x axis in giga electron volts. Near zero giga electron volts, the difference in forces is large. Gravity is the weakest force, followed by the weak force, then the electromagnetic force, and finally the strong force is the strongest. At about one hundred giga electron volts, the curves for the electromagnetic and weak force combine to become the electroweak force, but gravity remains weaker and the strong force remains stronger. Near ten to the fifteen giga electron volts, the electroweak force combines with the strong force at a point labeled G U T. Finally, at about ten to the nineteenth giga electron volts, gravity is combined with the electroweak plus strong force at a point labeled T O E.
Figure 33.24 The relative strengths of the four basic forces vary with distance and, hence, energy is needed to probe small distances. At ordinary energies (a few eV or less), the forces differ greatly as indicated in Table 33.1. However, at energies available at accelerators, the weak and EM forces become identical, or unified. Unfortunately, the energies at which the strong and electroweak forces become the same are unreachable even in principle at any conceivable accelerator. The universe may provide a laboratory, and nature may show effects at ordinary energies that give us clues about the validity of this graph.

The small distances and high energies at which the electroweak force becomes identical with the strong nuclear force are not reachable with any conceivable human-built accelerator. At energies of about 1014GeV1014GeV (16,000 J per particle), distances of about 1030m1030m can be probed. Such energies are needed to test theory directly, but these are about 10101010 higher than the proposed giant SSC would have had, and the distances are about 10121012 smaller than any structure we have direct knowledge of. This would be the realm of various GUTs, of which there are many since there is no constraining evidence at these energies and distances. Past experience has shown that any time you probe so many orders of magnitude further (here, about 10121012), you find the unexpected. Even more extreme are the energies and distances at which gravity is thought to unify with the other forces in a TOE. Most speculative and least constrained by experiment are TOEs, one of which is called Superstring theory. Superstrings are entities that are 1035m1035m in scale and act like one-dimensional oscillating strings and are also proposed to underlie all particles, forces, and space itself.

At the energy of GUTs, the carrier particles of the weak force would become massless and identical to gluons. If that happens, then both lepton and baryon conservation would be violated. We do not see such violations, because we do not encounter such energies. However, there is a tiny probability that, at ordinary energies, the virtual particles that violate the conservation of baryon number may exist for extremely small amounts of time (corresponding to very small ranges). All GUTs thus predict that the proton should be unstable, but would decay with an extremely long lifetime of about 1031y1031y. The predicted decay mode is

pπ0+e+, (proposed proton decay)pπ0+e+, (proposed proton decay)

which violates both conservation of baryon number and electron family number. Although 1031y1031y is an extremely long time (about 10211021 times the age of the universe), there are a lot of protons, and detectors have been constructed to look for the proposed decay mode as seen in Figure 33.25. It is somewhat comforting that proton decay has not been detected, and its experimental lifetime is now greater than 5×1032y5×1032y. This does not prove GUTs wrong, but it does place greater constraints on the theories, benefiting theorists in many ways.

From looking increasingly inward at smaller details for direct evidence of electroweak theory and GUTs, we turn around and look to the universe for evidence of the unification of forces. In the 1920s, the expansion of the universe was discovered. Thinking backward in time, the universe must once have been very small, dense, and extremely hot. At a tiny fraction of a second after the fabled Big Bang, forces would have been unified and may have left their fingerprint on the existing universe. This, one of the most exciting forefronts of physics, is the subject of Frontiers of Physics.

The image shows the picture of a huge cylindrical shaped proton decay detector with its main door open. It is as high as a double decker bus and as long as a small house. An untold number of cables, wires, and detector modules are arranged in a cylinder around a rectangular crate-like object containing another smaller cylindrical object.
Figure 33.25 In the Tevatron accelerator at Fermilab, protons and antiprotons collide at high energies, and some of those collisions could result in the production of a Higgs boson in association with a W boson. When the W boson decays to a high-energy lepton and a neutrino, the detector triggers on the lepton, whether it is an electron or a muon. (credit: D. J. Miller)
Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.