Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Problems & Exercises

1.

5.701 MeV

3.

42 99 Mo 57 43 99 Tc 56 + β + v ¯ e 42 99 Mo 57 43 99 Tc 56 + β + v ¯ e

5.

1 . 43 × 10 9 g 1 . 43 × 10 9 g

7.

(a) 6.958 MeV

(b) 5.7×1010g5.7×1010g

8.

(a) 100 mSv

(b) 80 mSv

(c) ~30 mSv

10.

~2 Gy

12.

1.69 mm

14.

1.24 MeV

16.

7.44 × 10 8 7.44 × 10 8

18.

4.92 × 10 –4 Sv 4.92 × 10 –4 Sv

20.

4.43 g

22.

0.010 g

24.

95%

26.

(a) A=1+1=2A=1+1=2, Z=1+1=1+1Z=1+1=1+1, efn=0=1+1efn=0=1+1

(b) A=1+2=3A=1+2=3, Z=1+1=2Z=1+1=2, efn=0=0efn=0=0

(c) A=3+3=4+1+1A=3+3=4+1+1, Z=2+2=2+1+1Z=2+2=2+1+1, efn=0=0efn=0=0

28.

E = m i m f c 2 = 4m 1 H m 4 He c 2 = 4 ( 1.007825 ) 4 . 002603 ( 931.5 MeV ) = 26.73 MeV E = m i m f c 2 = 4m 1 H m 4 He c 2 = 4 ( 1.007825 ) 4 . 002603 ( 931.5 MeV ) = 26.73 MeV

30.

3.12×105kg3.12×105kg (about 200 tons)

32.

E = m i m f c 2 E 1 = 1.008665 + 3.016030 4.002603 ( 931.5 MeV ) = 20.58 MeV E 2 = 1 . 008665 + 1 . 007825 2 . 014102 ( 931.5 MeV ) = 2.224 MeV E = m i m f c 2 E 1 = 1.008665 + 3.016030 4.002603 ( 931.5 MeV ) = 20.58 MeV E 2 = 1 . 008665 + 1 . 007825 2 . 014102 ( 931.5 MeV ) = 2.224 MeV

4 He is more tightly bound, since this reaction gives off more energy per nucleon. 4 He is more tightly bound, since this reaction gives off more energy per nucleon.

34.

1 . 19 × 10 4 kg 1 . 19 × 10 4 kg

36.

2 e + 4 1 H 4 He + + 2v e 2 e + 4 1 H 4 He + + 2v e

38.

(a) A=12+1=13A=12+1=13, Z=6+1=7Z=6+1=7, efn=0=0efn=0=0

(b) A=13=13A=13=13, Z=7=6+1Z=7=6+1, efn=0=1+1efn=0=1+1

(c) A=13+1=14A=13+1=14, Z=6+1=7Z=6+1=7, efn=0=0efn=0=0

(d) A=14+1=15A=14+1=15, Z=7+1=8Z=7+1=8, efn=0=0efn=0=0

(e) A=15=15A=15=15, Z=8=7+1Z=8=7+1, efn=0=1+1efn=0=1+1

(f) A=15+1=12+4A=15+1=12+4, Z=7+1=6+2Z=7+1=6+2, efn=0=0efn=0=0

40.

E γ = 20.6 MeV E γ = 20.6 MeV

E 4 He = 5.68 × 10-2 MeV E 4 He = 5.68 × 10-2 MeV

42.

(a) 3×109y3×109y

(b) This is approximately half the lifetime of the Earth.

43.

(a) 177.1 MeV

(b) Because the gain of an external neutron yields about 6 MeV, which is the average BE/ABE/A for heavy nuclei.

(c) A=1+238=96+140+1+1+1,Z=92=38+53,efn=0=0A=1+238=96+140+1+1+1,Z=92=38+53,efn=0=0

45.

(a) 180.6 MeV

(b) A=1+239=96+140+1+1+1+1,Z=94=38+56,efn=0=0A=1+239=96+140+1+1+1+1,Z=94=38+56,efn=0=0

47.

238U+n239U+γ238U+n239U+γ 4.81 MeV

239U239Np+β+ve239U239Np+β+ve 0.753 MeV

239Np239Pu+β+ve239Np239Pu+β+ve 0.211 MeV

49.

(a) 2.57×103MW2.57×103MW

(b) 8.03×1019fission/s8.03×1019fission/s

(c) 991 kg

51.

0.56 g

53.

4.781 MeV

55.

(a) Blast yields 2.1×1012J2.1×1012J to 8.4×1011J8.4×1011J, or 2.5 to 1, conventional to radiation enhanced.

(b) Prompt radiation yields 6.3×1011J6.3×1011J to 2.1×1011J2.1×1011J, or 3 to 1, radiation enhanced to conventional.

57.

(a) 1 . 1 × 10 25 fissions 1 . 1 × 10 25 fissions , 4.4 kg

(b) 3.2 × 10 26 fusions 3.2 × 10 26 fusions , 2.7 kg

(c) The nuclear fuel totals only 6 kg, so it is quite reasonable that some missiles carry 10 overheads. The mass of the fuel would only be 60 kg and therefore the mass of the 10 warheads, weighing about 10 times the nuclear fuel, would be only 1500 lbs. If the fuel for the missiles weighs 5 times the total weight of the warheads, the missile would weigh about 9000 lbs or 4.5 tons. This is not an unreasonable weight for a missile.

59.

7 × 10 4 g 7 × 10 4 g

61.

(a) 4.86×109W4.86×109W

(b) 11.0 y

62.

(a) (0.500,2.00,3.00) (0.500,2.00,3.00) and (0.500,2.00,3.00) (0.500,2.00,3.00)

(b) (0.000,1.50,3.00) (0.000,1.50,3.00) and (0.000,2.50,3.00) (0.000,2.50,3.00)

(c) They travel in opposite directions along the same line.

(d) Yes.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.