Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics 2e

24.4 Energy in Electromagnetic Waves

College Physics 2e24.4 Energy in Electromagnetic Waves

Learning Objectives

By the end of this section, you will be able to:

  • Explain how the energy and amplitude of an electromagnetic wave are related.
  • Given its power output and the heating area, calculate the intensity of a microwave oven’s electromagnetic field, as well as its peak electric and magnetic field strengths

Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this energy is obvious, such as in the warmth of the summer sun. Other times it is subtle, such as the unfelt energy of gamma rays, which can destroy living cells.

Electromagnetic waves can bring energy into a system by virtue of their electric and magnetic fields. These fields can exert forces and move charges in the system and, thus, do work on them. If the frequency of the electromagnetic wave is the same as the natural frequencies of the system (such as microwaves at the resonant frequency of water molecules), the transfer of energy is much more efficient.

Connections: Waves and Particles

The behavior of electromagnetic radiation clearly exhibits wave characteristics. But we shall find in later modules that at high frequencies, electromagnetic radiation also exhibits particle characteristics. These particle characteristics will be used to explain more of the properties of the electromagnetic spectrum and to introduce the formal study of modern physics.

Another startling discovery of modern physics is that particles, such as electrons and protons, exhibit wave characteristics. This simultaneous sharing of wave and particle properties for all submicroscopic entities is one of the great symmetries in nature.

The propagation of two electromagnetic waves is shown in three dimensional planes. The first wave shows with the variation of two components E and B. E is a sine wave in one plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. The energy carried is given as E sub u. The second wave shows with the variation of the components two E and two B, that is, E and B waves with double the amplitude of the first case. Two E is a sine wave in one plane with small arrows showing the vibrations of particles in the plane. Two B is a sine wave in a plane perpendicular to the two E wave. The two B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because two E and two B waves are perpendicular to each other. The direction of propagation of wave is shown perpendicular to two E and two B waves. The energy carried is given as four E sub u.
Figure 24.22 Energy carried by a wave is proportional to its amplitude squared. With electromagnetic waves, larger EE-fields and BB-fields exert larger forces and can do more work.

But there is energy in an electromagnetic wave, whether it is absorbed or not. Once created, the fields carry energy away from a source. If absorbed, the field strengths are diminished and anything left travels on. Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater the energy the electromagnetic wave carries.

A wave’s energy is proportional to its amplitude squared (E2E2 or B2B2). This is true for waves on guitar strings, for water waves, and for sound waves, where amplitude is proportional to pressure. In electromagnetic waves, the amplitude is the maximum field strength of the electric and magnetic fields. (See Figure 24.22.)

Thus the energy carried and the intensity II of an electromagnetic wave is proportional to E2E2 and B2B2. In fact, for a continuous sinusoidal electromagnetic wave, the average intensity IaveIave is given by

Iave=0E022,Iave=0E022,
24.18

where cc is the speed of light, ε0ε0 is the permittivity of free space, and E0E0 is the maximum electric field strength; intensity, as always, is power per unit area (here in W/m2W/m2).

The average intensity of an electromagnetic wave IaveIave can also be expressed in terms of the magnetic field strength by using the relationship B=E/cB=E/c, and the fact that ε0=1/μ0c2ε0=1/μ0c2, where μ0μ0 is the permeability of free space. Algebraic manipulation produces the relationship

Iave=cB020,Iave=cB020,
24.19

where B0B0 is the maximum magnetic field strength.

One more expression for IaveIave in terms of both electric and magnetic field strengths is useful. Substituting the fact that cB0=E0cB0=E0, the previous expression becomes

Iave=E0B00.Iave=E0B00.
24.20

Whichever of the three preceding equations is most convenient can be used, since they are really just different versions of the same principle: Energy in a wave is related to amplitude squared. Furthermore, since these equations are based on the assumption that the electromagnetic waves are sinusoidal, peak intensity is twice the average; that is, I0=2IaveI0=2Iave.

Example 24.4

Calculate Microwave Intensities and Fields

On its highest power setting, a certain microwave oven projects 1.00 kW of microwaves onto a 30.0 by 40.0 cm area. (a) What is the intensity in W/m2W/m2? (b) Calculate the peak electric field strength E0E0 in these waves. (c) What is the peak magnetic field strength B0B0?

Strategy

In part (a), we can find intensity from its definition as power per unit area. Once the intensity is known, we can use the equations below to find the field strengths asked for in parts (b) and (c).

Solution for (a)

Entering the given power into the definition of intensity, and noting the area is 0.300 by 0.400 m, yields

I=PA=1.00 kW0.300 m×0.400 m.I=PA=1.00 kW0.300 m×0.400 m.
24.21

Here I=IaveI=Iave, so that

Iave=1000 W0.120 m2=8.33×103 W/m2.Iave=1000 W0.120 m2=8.33×103 W/m2.
24.22

Note that the peak intensity is twice the average:

I0=2Iave=1.67×104W/m2.I0=2Iave=1.67×104W/m2.
24.23

Solution for (b)

To find E0E0, we can rearrange the first equation given above for IaveIave to give

E0=2Iave01/2.E0=2Iave01/2.
24.24

Entering known values gives

E 0 = 2 ( 8 . 33 × 10 3 W/m 2 ) ( 3 . 00 × 10 8 m/s ) ( 8.85 × 10 12 C 2 / N m 2 ) = 2.51 × 10 3 V/m . E 0 = 2 ( 8 . 33 × 10 3 W/m 2 ) ( 3 . 00 × 10 8 m/s ) ( 8.85 × 10 12 C 2 / N m 2 ) = 2.51 × 10 3 V/m .
24.25

Solution for (c)

Perhaps the easiest way to find magnetic field strength, now that the electric field strength is known, is to use the relationship given by

B0=E0c.B0=E0c.
24.26

Entering known values gives

B 0 = 2.51 × 10 3 V/m 3.0 × 10 8 m/s = 8.35 × 10 6 T . B 0 = 2.51 × 10 3 V/m 3.0 × 10 8 m/s = 8.35 × 10 6 T .
24.27

Discussion

As before, a relatively strong electric field is accompanied by a relatively weak magnetic field in an electromagnetic wave, since B=E/cB=E/c, and cc is a large number.

PhET Explorations

Explore the effect of different types of radiation on various molecules. Choose the type of radiation and the molecules to see how they interact.

Click to view content

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.