Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics 2e

12.4 Viscosity and Laminar Flow; Poiseuille’s Law

College Physics 2e12.4 Viscosity and Laminar Flow; Poiseuille’s Law

Menu
Table of contents
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Introduction to Science and the Realm of Physics, Physical Quantities, and Units
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Introduction to One-Dimensional Kinematics
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One-Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One-Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  4. 3 Two-Dimensional Kinematics
    1. Introduction to Two-Dimensional Kinematics
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Introduction to Dynamics: Newton’s Laws of Motion
    2. 4.1 Development of Force Concept
    3. 4.2 Newton’s First Law of Motion: Inertia
    4. 4.3 Newton’s Second Law of Motion: Concept of a System
    5. 4.4 Newton’s Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Forces
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton’s Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Introduction: Further Applications of Newton’s Laws
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
  7. 6 Uniform Circular Motion and Gravitation
    1. Introduction to Uniform Circular Motion and Gravitation
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton’s Universal Law of Gravitation
    7. 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  8. 7 Work, Energy, and Energy Resources
    1. Introduction to Work, Energy, and Energy Resources
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  9. 8 Linear Momentum and Collisions
    1. Introduction to Linear Momentum and Collisions
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  10. 9 Statics and Torque
    1. Introduction to Statics and Torque
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  11. 10 Rotational Motion and Angular Momentum
    1. Introduction to Rotational Motion and Angular Momentum
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  12. 11 Fluid Statics
    1. Introduction to Fluid Statics
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Introduction to Fluid Dynamics and Its Biological and Medical Applications
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Introduction to Temperature, Kinetic Theory, and the Gas Laws
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  15. 14 Heat and Heat Transfer Methods
    1. Introduction to Heat and Heat Transfer Methods
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  16. 15 Thermodynamics
    1. Introduction to Thermodynamics
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  17. 16 Oscillatory Motion and Waves
    1. Introduction to Oscillatory Motion and Waves
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  18. 17 Physics of Hearing
    1. Introduction to the Physics of Hearing
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  19. 18 Electric Charge and Electric Field
    1. Introduction to Electric Charge and Electric Field
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Coulomb’s Law
    5. 18.4 Electric Field: Concept of a Field Revisited
    6. 18.5 Electric Field Lines: Multiple Charges
    7. 18.6 Electric Forces in Biology
    8. 18.7 Conductors and Electric Fields in Static Equilibrium
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  20. 19 Electric Potential and Electric Field
    1. Introduction to Electric Potential and Electric Energy
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Introduction to Electric Current, Resistance, and Ohm's Law
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  22. 21 Circuits and DC Instruments
    1. Introduction to Circuits and DC Instruments
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  23. 22 Magnetism
    1. Introduction to Magnetism
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
  25. 24 Electromagnetic Waves
    1. Introduction to Electromagnetic Waves
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  26. 25 Geometric Optics
    1. Introduction to Geometric Optics
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  27. 26 Vision and Optical Instruments
    1. Introduction to Vision and Optical Instruments
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  28. 27 Wave Optics
    1. Introduction to Wave Optics
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  29. 28 Special Relativity
    1. Introduction to Special Relativity
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  30. 29 Quantum Physics
    1. Introduction to Quantum Physics
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  31. 30 Atomic Physics
    1. Introduction to Atomic Physics
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  32. 31 Radioactivity and Nuclear Physics
    1. Introduction to Radioactivity and Nuclear Physics
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  33. 32 Medical Applications of Nuclear Physics
    1. Introduction to Applications of Nuclear Physics
    2. 32.1 Diagnostics and Medical Imaging
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  34. 33 Particle Physics
    1. Introduction to Particle Physics
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  35. 34 Frontiers of Physics
    1. Introduction to Frontiers of Physics
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
    32. Chapter 32
    33. Chapter 33
    34. Chapter 34
  41. Index

Learning Objectives

By the end of this section, you will be able to:

  • Define laminar flow and turbulent flow.
  • Explain what viscosity is.
  • Calculate flow and resistance with Poiseuille’s law.
  • Explain how pressure drops due to resistance.

Laminar Flow and Viscosity

When you pour yourself a glass of juice, the liquid flows freely and quickly. But when you pour syrup on your pancakes, that liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself and between the fluid and its surroundings. We call this property of fluids viscosity. Juice has low viscosity, whereas syrup has high viscosity. In the previous sections we have considered ideal fluids with little or no viscosity. In this section, we will investigate what factors, including viscosity, affect the rate of fluid flow.

The precise definition of viscosity is based on laminar, or nonturbulent, flow. Before we can define viscosity, then, we need to define laminar flow and turbulent flow. Figure 12.10 shows both types of flow. Laminar flow is characterized by the smooth flow of the fluid in layers that do not mix. Turbulent flow, or turbulence, is characterized by eddies and swirls that mix layers of fluid together.

Photograph of smoke rising smoothly for a while and then beginning to form swirls and eddies.
Figure 12.10 Smoke rises smoothly for a while and then begins to form swirls and eddies. The smooth flow is called laminar flow, whereas the swirls and eddies typify turbulent flow. If you watch the smoke (being careful not to breathe on it), you will notice that it rises more rapidly when flowing smoothly than after it becomes turbulent, implying that turbulence poses more resistance to flow. (credit: Creativity103)

Figure 12.11 shows schematically how laminar and turbulent flow differ. Layers flow without mixing when flow is laminar. When there is turbulence, the layers mix, and there are significant velocities in directions other than the overall direction of flow. The lines that are shown in many illustrations are the paths followed by small volumes of fluids. These are called streamlines. Streamlines are smooth and continuous when flow is laminar, but break up and mix when flow is turbulent. Turbulence has two main causes. First, any obstruction or sharp corner, such as in a faucet, creates turbulence by imparting velocities perpendicular to the flow. Second, high speeds cause turbulence. The drag both between adjacent layers of fluid and between the fluid and its surroundings forms swirls and eddies, if the speed is great enough. We shall concentrate on laminar flow for the remainder of this section, leaving certain aspects of turbulence for later sections.

Part a of the figure shows a laminar flow on a fixed smooth surface. The different layers of the liquid are shown as different colored bands along the horizontal surface. The friction is shown to act all along the line separating two layers. The direction of flow of the fluid is toward right and the velocity is shown as v b for layers at the bottom and v t for layers on top. Part b of the figure shows turbulent flow on a surface with some obstruction. The fluid directions are horizontal on smooth path and irregular near the area of the obstruction. The velocity is v on top as well as at the bottom of the fluid.
Figure 12.11 (a) Laminar flow occurs in layers without mixing. Notice that viscosity causes drag between layers as well as with the fixed surface. (b) An obstruction in the vessel produces turbulence. Turbulent flow mixes the fluid. There is more interaction, greater heating, and more resistance than in laminar flow.

Making Connections: Take-Home Experiment: Go Down to the River

Try dropping simultaneously two sticks into a flowing river, one near the edge of the river and one near the middle. Which one travels faster? Why?

Figure 12.12 shows how viscosity is measured for a fluid. Two parallel plates have the specific fluid between them. The bottom plate is held fixed, while the top plate is moved to the right, dragging fluid with it. The layer (or lamina) of fluid in contact with either plate does not move relative to the plate, and so the top layer moves at vv while the bottom layer remains at rest. Each successive layer from the top down exerts a force on the one below it, trying to drag it along, producing a continuous variation in speed from vv to 0 as shown. Care is taken to insure that the flow is laminar; that is, the layers do not mix. The motion in Figure 12.12 is like a continuous shearing motion. Fluids have zero shear strength, but the rate at which they are sheared is related to the same geometrical factors AA and LL as is shear deformation for solids.

The figure shows the laminar flow of fluid between two rectangular plates each of area A. The bottom plate is shown as fixed. The distance between the plates is L. The top plate is shown to be pushed to right with a force F. The direction of movement of the layer of fluid in contact with the top plate is also toward right with velocity v. The fluid in contact with the plate in the bottom is shown to be in rest with v equals zero. As we see through the layers above the one on the bottom plate, each show a small displacement toward right in increasing order of value with the topmost layer showing the maximum.
Figure 12.12 The graphic shows laminar flow of fluid between two plates of area AA. The bottom plate is fixed. When the top plate is pushed to the right, it drags the fluid along with it.

A force FF is required to keep the top plate in Figure 12.12 moving at a constant velocity vv, and experiments have shown that this force depends on four factors. First, FF is directly proportional to vv (until the speed is so high that turbulence occurs—then a much larger force is needed, and it has a more complicated dependence on vv). Second, FF is proportional to the area AA of the plate. This relationship seems reasonable, since AA is directly proportional to the amount of fluid being moved. Third, FF is inversely proportional to the distance between the plates LL. This relationship is also reasonable; LL is like a lever arm, and the greater the lever arm, the less force that is needed. Fourth, FF is directly proportional to the coefficient of viscosity, ηη. The greater the viscosity, the greater the force required. These dependencies are combined into the equation

F=ηvAL,F=ηvAL,
12.41

which gives us a working definition of fluid viscosity ηη. Solving for ηη gives

η=FLvA,η=FLvA,
12.42

which defines viscosity in terms of how it is measured. The SI unit of viscosity is Nm/[(m/s)m2]=(N/m2)s or PasNm/[(m/s)m2]=(N/m2)s or Pas. Table 12.1 lists the coefficients of viscosity for various fluids.

Viscosity varies from one fluid to another by several orders of magnitude. As you might expect, the viscosities of gases are much less than those of liquids, and these viscosities are often temperature dependent. The viscosity of blood can be reduced by aspirin consumption, allowing it to flow more easily around the body. (When used over the long term in low doses, aspirin can help prevent heart attacks, and reduce the risk of blood clotting.)

Laminar Flow Confined to Tubes—Poiseuille’s Law

What causes flow? The answer, not surprisingly, is pressure difference. In fact, there is a very simple relationship between horizontal flow and pressure. Flow rate QQ is in the direction from high to low pressure. The greater the pressure differential between two points, the greater the flow rate. This relationship can be stated as

Q=P2P1R,Q=P2P1R,
12.43

where P1P1 and P2P2 are the pressures at two points, such as at either end of a tube, and RR is the resistance to flow. The resistance RR includes everything, except pressure, that affects flow rate. For example, RR is greater for a long tube than for a short one. The greater the viscosity of a fluid, the greater the value of RR. Turbulence greatly increases RR, whereas increasing the diameter of a tube decreases RR.

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a tube to viscous flow, as in Figure 12.13, we see that for a viscous fluid, speed is greatest at midstream because of drag at the boundaries. We can see the effect of viscosity in a Bunsen burner flame, even though the viscosity of natural gas is small.

The resistance RR to laminar flow of an incompressible fluid having viscosity ηη through a horizontal tube of uniform radius rr and length ll, such as the one in Figure 12.14, is given by

R = 8 η l π r 4 . R = 8 η l π r 4 .
12.44

This equation is called Poiseuille’s law for resistance after the French scientist J. L. Poiseuille (1799–1869), who derived it in an attempt to understand the flow of blood, an often turbulent fluid.

Part a of the diagram shows a fluid flow across a rectangular non viscous medium. The speed of the fluid is shown to be same across the tube represented as same length of vertical rising arrows. Part b of the diagram shows a fluid flow across a rectangular viscous medium. The speed of the fluid speed at the walls is zero, increasing steadily to its maximum at the center of the tube represented as wave like variation for length of vertical rising arrows. Part c of the figure shows a burning Bunsen burner.
Figure 12.13 (a) If fluid flow in a tube has negligible resistance, the speed is the same all across the tube. (b) When a viscous fluid flows through a tube, its speed at the walls is zero, increasing steadily to its maximum at the center of the tube. (c) The shape of the Bunsen burner flame is due to the velocity profile across the tube. (credit: Jason Woodhead)

Let us examine Poiseuille’s expression for RR to see if it makes good intuitive sense. We see that resistance is directly proportional to both fluid viscosity ηη and the length ll of a tube. After all, both of these directly affect the amount of friction encountered—the greater either is, the greater the resistance and the smaller the flow. The radius rr of a tube affects the resistance, which again makes sense, because the greater the radius, the greater the flow (all other factors remaining the same). But it is surprising that rr is raised to the fourth power in Poiseuille’s law. This exponent means that any change in the radius of a tube has a very large effect on resistance. For example, doubling the radius of a tube decreases resistance by a factor of 24=1624=16.

Taken together, Q=P2P1RQ=P2P1R and R=8ηlπr4R=8ηlπr4 give the following expression for flow rate:

Q=(P2P1)πr48ηl.Q=(P2P1)πr48ηl.
12.45

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or simply Poiseuille’s law.

Example 12.7

Using Flow Rate: Plaque Deposits Reduce Blood Flow

Suppose the flow rate of blood in a coronary artery has been reduced to half its normal value by plaque deposits. By what factor has the radius of the artery been reduced, assuming no turbulence occurs?

Strategy

Assuming laminar flow, Poiseuille’s law states that

Q=(P2P1)πr48ηl.Q=(P2P1)πr48ηl.
12.46

We need to compare the artery radius before and after the flow rate reduction.

Solution

With a constant pressure difference assumed and the same length and viscosity, along the artery we have

Q1r14=Q2r24.Q1r14=Q2r24.
12.47

So, given that Q2=0.5Q1Q2=0.5Q1, we find that r24=0.5r14r24=0.5r14.

Therefore, r2=0.50.25r1=0.841r1r2=0.50.25r1=0.841r1, a decrease in the artery radius of 16%.

Discussion

This decrease in radius is surprisingly small for this situation. To restore the blood flow in spite of this buildup would require an increase in the pressure difference P2P1P2P1 of a factor of two, with subsequent strain on the heart.

Fluid Temperature (ºC) Viscosity η(mPa·s) η(mPa·s)
Gases
Air 0 0.0171
20 0.0181
40 0.0190
100 0.0218
Ammonia 20 0.00974
Carbon dioxide 20 0.0147
Helium 20 0.0196
Hydrogen 0 0.0090
Mercury 20 0.0450
Oxygen 20 0.0203
Steam 100 0.0130
Liquids
Water 0 1.792
20 1.002
37 0.6947
40 0.653
100 0.282
Whole blood1 20 3.015
37 2.084
Blood plasma2 20 1.810
37 1.257
Ethyl alcohol 20 1.20
Methanol 20 0.584
Oil (heavy machine) 20 660
Oil (motor, SAE 10) 30 200
Oil (olive) 20 138
Glycerin 20 1500
Honey 20 2000–10000
Maple Syrup 20 2000–3000
Milk 20 3.0
Oil (Corn) 20 65
Table 12.1 Coefficients of Viscosity of Various Fluids

The circulatory system provides many examples of Poiseuille’s law in action—with blood flow regulated by changes in vessel size and blood pressure. Blood vessels are not rigid but elastic. Adjustments to blood flow are primarily made by varying the size of the vessels, since the resistance is so sensitive to the radius. During vigorous exercise, blood vessels are selectively dilated to important muscles and organs and blood pressure increases. This creates both greater overall blood flow and increased flow to specific areas. Conversely, decreases in vessel radii, perhaps from plaques in the arteries, can greatly reduce blood flow. If a vessel’s radius is reduced by only 5% (to 0.95 of its original value), the flow rate is reduced to about (0.95)4=0.81(0.95)4=0.81 of its original value. A 19% decrease in flow is caused by a 5% decrease in radius. The body may compensate by increasing blood pressure by 19%, but this presents hazards to the heart and any vessel that has weakened walls. Another example comes from automobile engine oil. If you have a car with an oil pressure gauge, you may notice that oil pressure is high when the engine is cold. Motor oil has greater viscosity when cold than when warm, and so pressure must be greater to pump the same amount of cold oil.

The figure shows a section of a cylindrical tube of length l. The two end cross section are shown to have pressure P two and P one respectively. The radius of the cylindrical tube is given by r. The direction of flow is shown by horizontal arrows toward right end of the tube. The flow rate is marked as Q.
Figure 12.14 Poiseuille’s law applies to laminar flow of an incompressible fluid of viscosity ηη through a tube of length ll and radius rr. The direction of flow is from greater to lower pressure. Flow rate QQ is directly proportional to the pressure difference P2P1P2P1, and inversely proportional to the length ll of the tube and viscosity ηη of the fluid. Flow rate increases with r4r4, the fourth power of the radius.

Example 12.8

What Pressure Produces This Flow Rate?

An intravenous (IV) system is supplying saline solution to a patient at the rate of 0.120cm3/s0.120cm3/s through a needle of radius 0.150 mm and length 2.50 cm. What pressure is needed at the entrance of the needle to cause this flow, assuming the viscosity of the saline solution to be the same as that of water? The gauge pressure of the blood in the patient’s vein is 8.00 mm Hg. (Assume that the temperature is 20ºC 20ºC .)

Strategy

Assuming laminar flow, Poiseuille’s law applies. This is given by

Q=(P2P1)πr48ηl,Q=(P2P1)πr48ηl,
12.48

where P2P2 is the pressure at the entrance of the needle and P1P1 is the pressure in the vein. The only unknown is P2P2.

Solution

Solving for P2P2 yields

P2=8ηlπr4Q+P1.P2=8ηlπr4Q+P1.
12.49

P1P1 is given as 8.00 mm Hg, which converts to 1.066×103N/m21.066×103N/m2. Substituting this and the other known values yields

P2 = 8(1.00×103Ns/m2)(2.50×102m)π(0.150×103m)4(1.20×107m3/s)+1.066×103N/m2 = 1.62×104N/m2. P2 = 8(1.00×103Ns/m2)(2.50×102m)π(0.150×103m)4(1.20×107m3/s)+1.066×103N/m2 = 1.62×104N/m2.
12.50

Discussion

This pressure could be supplied by an IV bottle with the surface of the saline solution 1.61 m above the entrance to the needle (this is left for you to solve in this chapter’s Problems and Exercises), assuming that there is negligible pressure drop in the tubing leading to the needle.

Flow and Resistance as Causes of Pressure Drops

You may have noticed that water pressure in your home might be lower than normal on hot summer days when there is more use. This pressure drop occurs in the water main before it reaches your home. Let us consider flow through the water main as illustrated in Figure 12.15. We can understand why the pressure P1P1 to the home drops during times of heavy use by rearranging

Q = P 2 P 1 R Q = P 2 P 1 R
12.51

to

P2P1=RQ,P2P1=RQ,
12.52

where, in this case, P2P2 is the pressure at the water works and RR is the resistance of the water main. During times of heavy use, the flow rate QQ is large. This means that P2P1P2P1 must also be large. Thus P1P1 must decrease. It is correct to think of flow and resistance as causing the pressure to drop from P2P2 to P1P1. P2P1=RQP2P1=RQ is valid for both laminar and turbulent flows.

Figure shows the water distribution system from a water works to homes around that area. The pressure at the pipeline near the water works is shown to have a pressure P two and the pressure at the dividing point were the pipe line splits to corresponding houses the pressure is shown as P one.
Figure 12.15 During times of heavy use, there is a significant pressure drop in a water main, and P 1 P 1 supplied to users is significantly less than P 2 P 2 created at the water works. If the flow is very small, then the pressure drop is negligible, and P2P1P2P1.

We can use P2P1=RQP2P1=RQ to analyze pressure drops occurring in more complex systems in which the tube radius is not the same everywhere. Resistance will be much greater in narrow places, such as an obstructed coronary artery. For a given flow rate QQ, the pressure drop will be greatest where the tube is most narrow. This is how water faucets control flow. Additionally, RR is greatly increased by turbulence, and a constriction that creates turbulence greatly reduces the pressure downstream. Plaque in an artery reduces pressure and hence flow, both by its resistance and by the turbulence it creates.

Figure 12.16 is a schematic of the human circulatory system, showing average blood pressures in its major parts for an adult at rest. Pressure created by the heart’s two pumps, the right and left ventricles, is reduced by the resistance of the blood vessels as the blood flows through them. The left ventricle increases arterial blood pressure that drives the flow of blood through all parts of the body except the lungs. The right ventricle receives the lower pressure blood from two major veins and pumps it through the lungs for gas exchange with atmospheric gases – the disposal of carbon dioxide from the blood and the replenishment of oxygen. Only one major organ is shown schematically, with typical branching of arteries to ever smaller vessels, the smallest of which are the capillaries, and rejoining of small veins into larger ones. Similar branching takes place in a variety of organs in the body, and the circulatory system has considerable flexibility in flow regulation to these organs by the dilation and constriction of the arteries leading to them and the capillaries within them. The sensitivity of flow to tube radius makes this flexibility possible over a large range of flow rates.

Figure is a schematic diagram of the circulatory system. The lungs, heart, arteries and vein systems are shown. The blood is shown to flow from the left atrium through the arteries, then through the veins and back to the right atrium. The flow is also shown from right atrium to the lungs and from lungs back to left atrium. All parts of the system are labeled. Pressure various points of the system all along the movement of blood across various parts are also marked.
Figure 12.16 Schematic of the circulatory system. Pressure difference is created by the two pumps in the heart and is reduced by resistance in the vessels. Branching of vessels into capillaries allows blood to reach individual cells and exchange substances, such as oxygen and waste products, with them. The system has an impressive ability to regulate flow to individual organs, accomplished largely by varying vessel diameters.

Each branching of larger vessels into smaller vessels increases the total cross-sectional area of the tubes through which the blood flows. For example, an artery with a cross section of 1cm21cm2 may branch into 20 smaller arteries, each with cross sections of 0.5cm20.5cm2, with a total of 10cm210cm2. In that manner, the resistance of the branchings is reduced so that pressure is not entirely lost. Moreover, because Q=A v ¯ Q=A v ¯ and A A increases through branching, the average velocity of the blood in the smaller vessels is reduced. The blood velocity in the aorta (diameter=1cmdiameter=1cm) is about 25 cm/s, while in the capillaries ( 20 μm 20 μm in diameter) the velocity is about 1 mm/s. This reduced velocity allows the blood to exchange substances with the cells in the capillaries and alveoli in particular.

Footnotes

  • 1The ratios of the viscosities of blood to water are nearly constant between 0°C and 37°C.
  • 2See note on Whole Blood.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information Citation information

© Jul 27, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.