About OpenStax
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit charitable corporation. As an educational initiative, it's our mission to transform learning so that education works for every student. Through our partnerships with philanthropic organizations and our alliance with other educational resource companies, we're breaking down the most common barriers to learning. Because we believe that everyone should and can have access to knowledge.
About OpenStax Resources
Customization
College Algebra 2e is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.
Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of your book.
Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on openstax.org for more information.
Art attribution
In College Algebra 2e, most photos and third-party illustrations contain attribution to their creator, rights holder, host platform, and/or license within the caption. Because the art is openly licensed, anyone may reuse the art as long as they provide the same attribution to its original source. To maximize readability and content flow, mathematical expressions that are rendered as art do not include attribution in the text. This art can be assumed to be developed by OpenStax and can be reused under the CC-BY license with attribution.
Errata
All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes on your book page on openstax.org.
Format
You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.
About College Algebra 2e
College Algebra 2e provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they’ve learned.
Coverage and Scope
In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction.
Chapters 1 and 2 provide both a review and foundation for study of functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course.
- Chapter 1: Prerequisites
- Chapter 2: Equations and Inequalities
Chapters 3-6: The Algebraic Functions
- Chapter 3: Functions
- Chapter 4: Linear Functions
- Chapter 5: Polynomial and Rational Functions
- Chapter 6: Exponential and Logarithm Functions
Chapters 7-9: Further Study in College Algebra
- Chapter 7: Systems of Equations and Inequalities
- Chapter 8: Analytic Geometry
- Chapter 9: Sequences, Probability, and Counting Theory
Development Overview
College Algebra 2e is the product of a collaborative effort by a group of dedicated authors, editors, and instructors whose collective passion for this project has resulted in a text that is remarkably unified in purpose and voice. Special thanks is due to our Lead Author, Jay Abramson of Arizona State University, who provided the overall vision for the book and oversaw the development of each and every chapter, drawing up the initial blueprint, reading numerous drafts, and assimilating field reviews into actionable revision plans for our authors and editors.
The collective experience of our author team allowed us to pinpoint the subtopics, exceptions, and individual connections that give students the most trouble. The textbook is therefore replete with well-designed features and highlights, which help students overcome these barriers. As the students read and practice, they are coached in methods of thinking through problems and internalizing mathematical processes.
Accuracy of the Content
We understand that precision and accuracy are imperatives in mathematics, and undertook an accuracy program led by experienced faculty. Examples, art, problems, and solutions were reviewed by dedicated faculty, with a separate team evaluating the answer key and solutions.
The text also benefits from years of usage by thousands of faculty and students. A core aspect of the second edition revision process included consolidating and ensuring consistency with regard to any errata and corrections that have been implemented during the series' extensive usage and incorporation into homework systems.
Changes to the Second Edition
The College Algebra 2e revision focused on mathematical clarity and accuracy as well as inclusivity. Examples, Exercises, and Solutions were reviewed by multiple faculty experts. All improvement suggestions and errata updates, driven by faculty and students from several thousand colleges, were considered and unified across the different formats of the text.
OpenStax and our authors are aware of the difficulties posed by shifting problem and exercise numbers when textbooks are revised. In an effort to make the transition to the 2nd edition as seamless as possible, we have minimized any shifting of exercise numbers.
The revision also focused on supporting inclusive and welcoming learning experiences. The introductory narratives, example and problem contexts, and even many of the names used for fictional people in the text were all reviewed using a diversity, equity, and inclusion framework. Several hundred resulting revisions improve the balance and relevance to the students using the text, while maintaining a variety of applications to diverse careers and academic fields. In particular, explanations of scientific and historical aspects of mathematics have been expanded to include more contributors. For example, the authors added additional historical and multicultural context regarding what is widely known as Pascal’s Triangle, and similarly added details regarding the international process of decoding the Enigma machine (including the role of Polish college students). Several chapter-opening narratives and in-chapter references are completely new, and contexts across all chapters were specifically reviewed for equity in gender representation and connotation.
Finally, prior to the release of this edition, OpenStax published a version to support Corequisite instruction, which is described in more detail below.
Pedagogical Foundations and Features
Learning Objectives
Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning objectives. The learning objectives are listed explicitly at the beginning of each section and are the focal point of every instructional element
Narrative text
Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the most important ideas:
- Key terms are boldfaced, typically when first introduced and/or when formally defined.
- Key concepts and definitions are called out in a blue box for easy reference.
Examples
Each learning objective is supported by one or more worked examples that demonstrate the problem-solving approaches that students must master. The multiple Examples model different approaches to the same type of problem or introduce similar problems of increasing complexity.
All Examples follow a simple two- or three-part format. The question clearly lays out a mathematical problem to solve. The Solution walks through the steps, usually providing context for the approach — in other words, why the instructor is solving the problem in a specific manner. Finally, the Analysis (for select examples) reflects on the broader implications of the Solution just shown. Examples are followed by a “Try It” question, as explained below.
Figures
College Algebra 2e contains many figures and illustrations, the vast majority of which are graphs and diagrams. Art throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each figure while minimizing visual distractions. Color contrast is employed with discretion to distinguish between the different functions or features of a graph.
Supporting Features
Several elements, each marked by a distinctive icon, contribute to and check understanding.
- A How To is a list of steps necessary to solve a certain type of problem. A How To typically precedes an Example that proceeds to demonstrate the steps in action.
- A Try It exercise immediately follows an Example or a set of related Examples, providing the student with an immediate opportunity to solve a similar problem. In the PDF and the Web View version of the text, answers to the Try It exercises are located in the Answer Key.
- A Q&A may appear at any point in the narrative, but most often follows an Example. This feature pre-empts misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.
- The Media icon appears at the conclusion of each section, just prior to the Section Exercises. This icon marks a list of links to online video tutorials that reinforce the concepts and skills introduced in the section.
While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials, nor were they specifically produced or tailored to accompany College Algebra 2e.
Section Exercises
Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used selectively for guided practice. With over 4600 exercises across the 9 chapters, instructors should have plenty from which to choose.
Section Exercises are organized by question type, and generally appear in the following order:
- Verbal questions assess conceptual understanding of key terms and concepts.
- Algebraic problems require students to apply algebraic manipulations demonstrated in the section.
- Graphical problems assess students’ ability to interpret or produce a graph.
- Numeric problems require the student to perform calculations or computations.
- Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic results or to solve problems via an alternative to the methods demonstrated in the section.
- Extensions pose problems more challenging than the Examples demonstrated in the section. They require students to synthesize multiple learning objectives or apply critical thinking to solve complex problems.
- Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology, finance, and the social sciences.
Chapter Review Features
Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students can use to prepare for exams.
- Key Terms provides a formal definition for each bold-faced term in the chapter.
- Key Equations presents a compilation of formulas, theorems, and standard-form equations.
- Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant Example(s) in case students need to review.
- Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each section.
- Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note that the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives as opposed to the foundational objectives covered in the opening sections.
- Answer Key includes the answers to all Try It exercises and every other exercise from the Section Exercises, Chapter Review Exercises, and Practice Test.
Corequisite Support
Each College Algebra 2e section is paired with a thoughtfully developed, topically aligned skills module that prepares students for the course material. Sharon North (St. Louis Community College) developed a coordinated set of support resources, which provide review, instruction, and practice for algebra students. The author team identified foundational skills and concepts, then mapped them to each module. The corequisite sections include conceptual overviews, worked examples, and guided practice; they incorporate relevant material from OpenStax’s Developmental Math series. They are available as separate, openly accessible downloads from the student and instructor resources pages accompanying the text. And they are also provided in an integrated manner in an alternate version of the text, College Algebra 2e with Corequisite Support.
Community Hubs
OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer Community Hubs on OER Commons—a platform for instructors to share community-created resources that support OpenStax books, free of charge. Through our Community Hubs, instructors can upload their own materials or download resources to use in their own courses, including additional ancillaries, teaching material, multimedia, and relevant course content. We encourage instructors to join the hubs for the subjects most relevant to your teaching and research as an opportunity both to enrich your courses and to engage with other faculty. To reach the Community Hubs, visit www.oercommons.org/hubs/openstax.
Technology partners
As allies in making high-quality learning materials accessible, our technology partners offer optional low-cost tools that are integrated with OpenStax books. To access the technology options for your text, visit your book page on openstax.org.
Additional Resources
Student and Instructor Resources
We’ve compiled additional resources for both students and instructors, including Getting Started Guides, an instructor solution manual, and PowerPoint slides. Instructor resources require a verified instructor account, which can be requested on your openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.
About the Authors
Senior Contributing Author
Jay Abramson, Arizona State University
Jay Abramson has been teaching Precalculus for over 35 years, the last 20 at Arizona State University, where he is a principal lecturer in the School of Mathematics and Statistics. His accomplishments at ASU include co-developing the university’s first hybrid and online math courses as well as an extensive library of video lectures and tutorials. In addition, he has served as a contributing author for two of Pearson Education’s math programs, NovaNet Precalculus and Trigonometry. Prior to coming to ASU, Jay taught at Texas State Technical College and Amarillo College. He received Teacher of the Year awards at both institutions.
Contributing Authors
Valeree Falduto, Palm Beach State College
Rachael Gross, Towson University
David Lippman, Pierce College
Melonie Rasmussen, Pierce College
Rick Norwood, East Tennessee State University
Nicholas Belloit, Florida State College Jacksonville
Jean-Marie Magnier, Springfield Technical Community College
Harold Whipple
Christina Fernandez
Reviewers
Phil Clark, Scottsdale Community College
Michael Cohen, Hofstra University
Matthew Goodell, SUNY Ulster
Lance Hemlow, Raritan Valley Community College
Dongrin Kim, Arizona State University
Cynthia Landrigan, Erie Community College
Wendy Lightheart, Lane Community College
Carl Penziul, Tompkins-Cortland Community College
Sandra Nite, Texas A&M University
Eugenia Peterson, Richard J. Daley College
Rhonda Porter, Albany State University
Michael Price, University of Oregon
William Radulovich, Florida State College Jacksonville
Camelia Salajean, City Colleges of Chicago
Katy Shields, Oakland Community College
Nathan Schrenk, ECPI University
Pablo Suarez, Delaware State University
Allen Wolmer, Atlanta Jewish Academy
The following faculty contributed to the development of OpenStax Precalculus, the text from which this product was updated and derived.
Precalculus Reviewers
Nina Alketa, Cecil College
Kiran Bhutani, Catholic University of America
Brandie Biddy, Cecil College
Lisa Blank, Lyme Central School
Bryan Blount, Kentucky Wesleyan College
Jessica Bolz, The Bryn Mawr School
Sheri Boyd, Rollins College
Sarah Brewer, Alabama School of Math and Science
Charles Buckley, St. Gregory's University
Kenneth Crane, Texarkana College
Rachel Cywinski, Alamo Colleges
Nathan Czuba
Srabasti Dutta, Ashford University
Kristy Erickson, Cecil College
Nicole Fernandez, Georgetown University / Kent State University
David French, Tidewater Community College
Douglas Furman, SUNY Ulster
Erinn Izzo, Nicaragua Christian Academy
John Jaffe
Jerry Jared, Blue Ridge School
Stan Kopec, Mount Wachusett Community College
Kathy Kovacs
Sara Lenhart, Christopher Newport University
Joanne Manville, Bunker Hill Community College
Karla McCavit, Albion College
Cynthia McGinnis, Northwest Florida State College
Lana Neal, University of Texas at Austin
Steven Purtee, Valencia College
Alice Ramos, Bethel College
Nick Reynolds, Montgomery Community College
Amanda Ross, A. A. Ross Consulting and Research, LLC
Erica Rutter, Arizona State University
Sutandra Sarkar, Georgia State University
Willy Schild, Wentworth Institute of Technology
Todd Stephen, Cleveland State University
Scott Sykes, University of West Georgia
Linda Tansil, Southeast Missouri State University
John Thomas, College of Lake County
Diane Valade, Piedmont Virginia Community College