Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Chemistry

Key Terms

ChemistryKey Terms

common ion effect
effect on equilibrium when a substance with an ion in common with the dissolved species is added to the solution; causes a decrease in the solubility of an ionic species, or a decrease in the ionization of a weak acid or base
complex ion
ion consisting of a transition metal central atom and surrounding molecules or ions called ligands
coordinate covalent bond
(also, dative bond) bond formed when one atom provides both electrons in a shared pair
dissociation constant
(Kd) equilibrium constant for the decomposition of a complex ion into its components in solution
formation constant
(Kf) (also, stability constant) equilibrium constant for the formation of a complex ion from its components in solution
Lewis acid
any species that can accept a pair of electrons and form a coordinate covalent bond
Lewis acid-base adduct
compound or ion that contains a coordinate covalent bond between a Lewis acid and a Lewis base
Lewis base
any species that can donate a pair of electrons and form a coordinate covalent bond
ligand
molecule or ion that surrounds a transition metal and forms a complex ion; ligands act as Lewis bases
molar solubility
solubility of a compound expressed in units of moles per liter (mol/L)
multiple equilibrium
system characterized by more than one state of balance between a slightly soluble ionic solid and an aqueous solution of ions working simultaneously
selective precipitation
process in which ions are separated using differences in their solubility with a given precipitating reagent
solubility product (Ksp)
equilibrium constant for the dissolution of a slightly soluble electrolyte
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry/pages/1-introduction
Citation information

© Feb 15, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.