Skip to Content
OpenStax Logo
Chemistry: Atoms First

Preface

Chemistry: Atoms FirstPreface
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  4. 3 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 3.1 Electromagnetic Energy
    3. 3.2 The Bohr Model
    4. 3.3 Development of Quantum Theory
    5. 3.4 Electronic Structure of Atoms (Electron Configurations)
    6. 3.5 Periodic Variations in Element Properties
    7. 3.6 The Periodic Table
    8. 3.7 Molecular and Ionic Compounds
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  5. 4 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 4.1 Ionic Bonding
    3. 4.2 Covalent Bonding
    4. 4.3 Chemical Nomenclature
    5. 4.4 Lewis Symbols and Structures
    6. 4.5 Formal Charges and Resonance
    7. 4.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  6. 5 Advanced Theories of Bonding
    1. Introduction
    2. 5.1 Valence Bond Theory
    3. 5.2 Hybrid Atomic Orbitals
    4. 5.3 Multiple Bonds
    5. 5.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  7. 6 Composition of Substances and Solutions
    1. Introduction
    2. 6.1 Formula Mass and the Mole Concept
    3. 6.2 Determining Empirical and Molecular Formulas
    4. 6.3 Molarity
    5. 6.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  8. 7 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 7.1 Writing and Balancing Chemical Equations
    3. 7.2 Classifying Chemical Reactions
    4. 7.3 Reaction Stoichiometry
    5. 7.4 Reaction Yields
    6. 7.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  9. 8 Gases
    1. Introduction
    2. 8.1 Gas Pressure
    3. 8.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 8.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 8.4 Effusion and Diffusion of Gases
    6. 8.5 The Kinetic-Molecular Theory
    7. 8.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  10. 9 Thermochemistry
    1. Introduction
    2. 9.1 Energy Basics
    3. 9.2 Calorimetry
    4. 9.3 Enthalpy
    5. 9.4 Strengths of Ionic and Covalent Bonds
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Spontaneity
    3. 12.2 Entropy
    4. 12.3 The Second and Third Laws of Thermodynamics
    5. 12.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salt Solutions
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Multiple Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Electrochemistry
    1. Introduction
    2. 16.1 Balancing Oxidation-Reduction Reactions
    3. 16.2 Galvanic Cells
    4. 16.3 Standard Reduction Potentials
    5. 16.4 The Nernst Equation
    6. 16.5 Batteries and Fuel Cells
    7. 16.6 Corrosion
    8. 16.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  18. 17 Kinetics
    1. Introduction
    2. 17.1 Chemical Reaction Rates
    3. 17.2 Factors Affecting Reaction Rates
    4. 17.3 Rate Laws
    5. 17.4 Integrated Rate Laws
    6. 17.5 Collision Theory
    7. 17.6 Reaction Mechanisms
    8. 17.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Nuclear Chemistry
    1. Introduction
    2. 20.1 Nuclear Structure and Stability
    3. 20.2 Nuclear Equations
    4. 20.3 Radioactive Decay
    5. 20.4 Transmutation and Nuclear Energy
    6. 20.5 Uses of Radioisotopes
    7. 20.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  22. 21 Organic Chemistry
    1. Introduction
    2. 21.1 Hydrocarbons
    3. 21.2 Alcohols and Ethers
    4. 21.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 21.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index

Welcome to Chemistry: Atoms First, an OpenStax resource. This textbook was written to increase student access to high-quality learning materials, maintaining the highest standards of academic rigor at little or no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first openly licensed college textbook was published in 2012 and our initiative has since scaled to over 25 books used by hundreds of thousands of students across the globe. OpenStax Tutor, our low-cost personalized learning tool, is being used in college courses throughout the country. The OpenStax mission is made possible through the generous support of philanthropic foundations. Through these partnerships and with the help of additional low-cost resources from our OpenStax Partners, OpenStax is breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax’s resources

Customization

Chemistry: Atoms First is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on OpenStax.org for more information.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes occur. Since our books are web-based, we can make updates periodically when deemed pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on OpenStax.org. All errata suggestions are reviewed by subject matter experts. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes on your book page on OpenStax.org.

Format

You can access this textbook for free in web view or PDF through OpenStax.org, and in low-cost print.

About Chemistry: Atoms First

This text is an atoms-first adaptation of OpenStax Chemistry. The intention of “atoms-first” involves a few basic principles: first, it introduces atomic and molecular structure much earlier than the traditional approach, and it threads these themes through subsequent chapters. This approach may be chosen as a way to delay the introduction of material such as stoichiometry that students traditionally find abstract and difficult, thereby allowing students time to acclimate their study skills to chemistry. Additionally, it gives students a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course. It also aims to center the study of chemistry on the atomic foundation that many will expand upon in a later course covering organic chemistry, easing that transition when the time arrives.

Coverage and scope

In Chemistry: Atoms First , we strive to make chemistry, as a discipline, interesting and accessible to students. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts of chemical science. All of the material included in a traditional general chemistry course is here. It has been reorganized in an atoms-first approach and, where necessary, new material has been added to allow for continuity and to improve the flow of topics. The text can be used for a traditional two-semester introduction to chemistry or for a three-semester introduction, an approach becoming more common at many institutions. The goal is to provide a progressive, graduated introduction to chemistry that focuses on the fundamentally atom-focused nature of the subject. Topics are introduced within the context of familiar experiences whenever possible, treated with an appropriate rigor to satisfy the intellect of the learner, and reinforced in subsequent discussions of related content. The organization and pedagogical features were developed and vetted with feedback from chemistry educators dedicated to the project.

  • Chapter 1: Essential Ideas
  • Chapter 2: Atoms, Molecules, and Ions
  • Chapter 3: Electronic Structure and Periodic Properties of Elements
  • Chapter 4: Chemical Bonding and Molecular Geometry
  • Chapter 5: Advanced Theories of Bonding
  • Chapter 6: Composition of Substances and Solutions
  • Chapter 7: Stoichiometry of Chemical Reactions
  • Chapter 8: Gases
  • Chapter 9: Thermochemistry
  • Chapter 10: Liquids and Solids
  • Chapter 11: Solutions and Colloids
  • Chapter 12: Thermodynamics
  • Chapter 13: Fundamental Equilibrium Concepts
  • Chapter 14: Acid-Base Equilibria
  • Chapter 15: Equilibria of Other Reaction Classes
  • Chapter 16: Electrochemistry
  • Chapter 17: Kinetics
  • Chapter 18: Representative Metals, Metalloids, and Nonmetals
  • Chapter 19: Transition Metals and Coordination Chemistry
  • Chapter 20: Nuclear Chemistry
  • Chapter 21: Organic Chemistry

Partnership with University of Connecticut and UConn Undergraduate Student Government

Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association.

Pedagogical foundation

Throughout Chemistry: Atoms First, you will find features that draw the students into scientific inquiry by taking selected topics a step further. Students and educators alike will appreciate discussions in these feature boxes.

  • Chemistry in Everyday Life ties chemistry concepts to everyday issues and real-world applications of science that students encounter in their lives. Topics include cell phones, solar thermal energy power plants, plastics recycling, and measuring blood pressure.
  • How Sciences Interconnect feature boxes discuss chemistry in context of its interconnectedness with other scientific disciplines. Topics include neurotransmitters, greenhouse gases and climate change, and proteins and enzymes.
  • Portrait of a Chemist features present a short bio and an introduction to the work of prominent figures from history and present day so that students can see the “face” of contributors in this field as well as science in action.

Comprehensive art program

Our art program is designed to enhance students’ understanding of concepts through clear, effective illustrations, diagrams, and photographs.

.. .. .. .. .. .. ..

Interactives that engage

Chemistry: Atoms First incorporates links to relevant interactive exercises and animations that help bring topics to life through our Link to Learning feature. Examples include:

  • PhET simulations
  • IUPAC data and interactives
  • TED talks

Assessments that reinforce key concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students to practice the skill with a “Check Your Learning” component. The book also includes assessments at the end of each chapter so students can apply what they’ve learned through practice problems.

Additional resources

Student and instructor resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, PowerPoint slides, and an instructor answer guide. Instructor resources require a verified instructor account, which you can apply for when you log in or create your account on OpenStax.org. Take advantage of these resources to supplement your OpenStax book.

Community Hubs

OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer Community Hubs on OER Commons – a platform for instructors to share community-created resources that support OpenStax books, free of charge. Through our Community Hubs, instructors can upload their own materials or download resources to use in their own courses, including additional ancillaries, teaching material, multimedia, and relevant course content. We encourage instructors to join the hubs for the subjects most relevant to your teaching and research as an opportunity both to enrich your courses and to engage with other faculty.  


To reach the Community Hubs, visit www.oercommons.org/hubs/OpenStax.

Partner resources

OpenStax partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on OpenStax.org.​

About the University of Connecticut

The University of Connecticut is one of the top public research universities in the nation, with more than 30,000 students pursuing answers to critical questions in labs, lecture halls, and the community. Knowledge exploration throughout the University’s network of campuses is united by a culture of innovation. An unprecedented commitment from the state of Connecticut ensures UConn attracts internationally renowned faculty and the world’s brightest students. A tradition of coaching winning athletes makes UConn a standout in Division l sports and fuels our academic spirit. As a vibrant, progressive leader, UConn fosters a diverse and dynamic culture that meets the challenges of a changing global society.

About our team

Senior contributing authors

Paul Flowers, University of North Carolina–Pembroke
Dr. Paul Flowers earned a BS in Chemistry from St. Andrews Presbyterian College in 1983 and a PhD in Analytical Chemistry from the University of Tennessee in 1988. After a one-year postdoctoral appointment at Los Alamos National Laboratory, he joined the University of North Carolina–Pembroke in the fall of 1989. Dr. Flowers teaches courses in general and analytical chemistry, and conducts experimental research involving the development of new devices and methods for microscale chemical analysis.

Klaus Theopold, University of Delaware
Dr. Klaus Theopold (born in Berlin, Germany) received his Vordiplom from the Universität Hamburg in 1977. He then decided to pursue his graduate studies in the United States, where he received his PhD in inorganic chemistry from UC Berkeley in 1982. After a year of postdoctoral research at MIT, he joined the faculty at Cornell University. In 1990, he moved to the University of Delaware, where he is a Professor in the Department of Chemistry and Biochemistry and serves as an Associate Director of the University’s Center for Catalytic Science and Technology. Dr. Theopold regularly teaches graduate courses in inorganic and organometallic chemistry as well as General Chemistry.

Richard Langley, Stephen F. Austin State University
Dr. Richard Langley earned BS degrees in Chemistry and Mineralogy from Miami University of Ohio in the early 1970s and went on to receive his PhD in Chemistry from the University of Nebraska in 1977. After a postdoctoral fellowship at the Arizona State University Center for Solid State Studies, Dr. Langley taught in the University of Wisconsin system and participated in research at Argonne National Laboratory. Moving to Stephen F. Austin State University in 1982, Dr. Langley today serves as Professor of Chemistry. His areas of specialization are solid state chemistry, synthetic inorganic chemistry, fluorine chemistry, and chemical education.

Edward J. Neth, University of Connecticut (Chemistry: Atoms First)
Dr. Edward J. Neth earned his BS in Chemistry (minor in Politics) at Fairfield University in 1985 and his MS (1988) and PhD (1995; Inorganic/Materials Chemistry) at the University of Connecticut. He joined the University of Connecticut in 2004 as a lecturer and currently teaches general and inorganic chemistry; his background includes having worked as a network engineer in both corporate and university settings, and he has served as Director of Academic Computing at New Haven University. He currently teaches a three-semester, introductory chemistry sequence at UConn and is involved with training and coordinating teaching assistants.

William R. Robinson, PhD

Contributing authors

Mark Blaser, Shasta College
Simon Bott, University of Houston
Donald Carpenetti, Craven Community College
Andrew Eklund, Alfred University
Emad El-Giar, University of Louisiana at Monroe
Don Frantz, Wilfrid Laurier University
Paul Hooker, Westminster College
Jennifer Look, Mercer University
George Kaminski, Worcester Polytechnic Institute
Carol Martinez, Central New Mexico Community College
Troy Milliken, Jackson State University
Vicki Moravec, Trine University
Jason Powell, Ferrum College
Thomas Sorensen, University of Wisconsin–Milwaukee
Allison Soult, University of Kentucky

Reviewers

Casey Akin, College Station Independent School District
Lara AL-Hariri, University of Massachusetts–Amherst
Sahar Atwa, University of Louisiana at Monroe
Todd Austell, University of North Carolina–Chapel Hill
Bobby Bailey, University of Maryland–University College
Robert Baker, Trinity College
Jeffrey Bartz, Kalamazoo College
Greg Baxley, Cuesta College
Ashley Beasley Green, National Institute of Standards and Technology
Patricia Bianconi, University of Massachusetts
Lisa Blank, Lyme Central School District
Daniel Branan, Colorado Community College System
Dorian Canelas, Duke University
Emmanuel Chang, York College
Carolyn Collins, College of Southern Nevada
Colleen Craig, University of Washington
Yasmine Daniels, Montgomery College–Germantown
Patricia Dockham, Grand Rapids Community College
Erick Fuoco, Richard J. Daley College
Andrea Geyer, University of Saint Francis
Daniel Goebbert, University of Alabama
John Goodwin, Coastal Carolina University
Stephanie Gould, Austin College
Patrick Holt, Bellarmine University
Kevin Kolack, Queensborough Community College
Amy Kovach, Roberts Wesleyan College
Judit Kovacs Beagle, University of Dayton
Krzysztof Kuczera, University of Kansas
Marcus Lay, University of Georgia
Pamela Lord, University of Saint Francis
Oleg Maksimov, Excelsior College
John Matson, Virginia Tech
Katrina Miranda, University of Arizona
Douglas Mulford, Emory University
Mark Ott, Jackson College
Adrienne Oxley, Columbia College
Richard Pennington, Georgia Gwinnett College
Rodney Powell, Coastal Carolina Community College
Jeanita Pritchett, Montgomery College–Rockville
Aheda Saber, University of Illinois at Chicago
Raymond Sadeghi, University of Texas at San Antonio
Nirmala Shankar, Rutgers University
Jonathan Smith, Temple University
Bryan Spiegelberg, Rider University
Ron Sternfels, Roane State Community College
Cynthia Strong, Cornell College
Kris Varazo, Francis Marion University
Victor Vilchiz, Virginia State University
Alex Waterson, Vanderbilt University
Juchao Yan, Eastern New Mexico University
Mustafa Yatin, Salem State University
Kazushige Yokoyama, State University of New York at Geneseo
Curtis Zaleski, Shippensburg University
Wei Zhang, University of Colorado–Boulder

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first/pages/1-introduction
Citation information

© Sep 16, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.