Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Chemistry: Atoms First

18.6 Occurrence, Preparation, and Properties of Carbonates

Chemistry: Atoms First18.6 Occurrence, Preparation, and Properties of Carbonates

Menu
Table of contents
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  4. 3 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 3.1 Electromagnetic Energy
    3. 3.2 The Bohr Model
    4. 3.3 Development of Quantum Theory
    5. 3.4 Electronic Structure of Atoms (Electron Configurations)
    6. 3.5 Periodic Variations in Element Properties
    7. 3.6 The Periodic Table
    8. 3.7 Molecular and Ionic Compounds
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  5. 4 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 4.1 Ionic Bonding
    3. 4.2 Covalent Bonding
    4. 4.3 Chemical Nomenclature
    5. 4.4 Lewis Symbols and Structures
    6. 4.5 Formal Charges and Resonance
    7. 4.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  6. 5 Advanced Theories of Bonding
    1. Introduction
    2. 5.1 Valence Bond Theory
    3. 5.2 Hybrid Atomic Orbitals
    4. 5.3 Multiple Bonds
    5. 5.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  7. 6 Composition of Substances and Solutions
    1. Introduction
    2. 6.1 Formula Mass
    3. 6.2 Determining Empirical and Molecular Formulas
    4. 6.3 Molarity
    5. 6.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  8. 7 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 7.1 Writing and Balancing Chemical Equations
    3. 7.2 Classifying Chemical Reactions
    4. 7.3 Reaction Stoichiometry
    5. 7.4 Reaction Yields
    6. 7.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  9. 8 Gases
    1. Introduction
    2. 8.1 Gas Pressure
    3. 8.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 8.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 8.4 Effusion and Diffusion of Gases
    6. 8.5 The Kinetic-Molecular Theory
    7. 8.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  10. 9 Thermochemistry
    1. Introduction
    2. 9.1 Energy Basics
    3. 9.2 Calorimetry
    4. 9.3 Enthalpy
    5. 9.4 Strengths of Ionic and Covalent Bonds
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Spontaneity
    3. 12.2 Entropy
    4. 12.3 The Second and Third Laws of Thermodynamics
    5. 12.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salt Solutions
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Multiple Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Electrochemistry
    1. Introduction
    2. 16.1 Balancing Oxidation-Reduction Reactions
    3. 16.2 Galvanic Cells
    4. 16.3 Standard Reduction Potentials
    5. 16.4 The Nernst Equation
    6. 16.5 Batteries and Fuel Cells
    7. 16.6 Corrosion
    8. 16.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  18. 17 Kinetics
    1. Introduction
    2. 17.1 Chemical Reaction Rates
    3. 17.2 Factors Affecting Reaction Rates
    4. 17.3 Rate Laws
    5. 17.4 Integrated Rate Laws
    6. 17.5 Collision Theory
    7. 17.6 Reaction Mechanisms
    8. 17.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Nuclear Chemistry
    1. Introduction
    2. 20.1 Nuclear Structure and Stability
    3. 20.2 Nuclear Equations
    4. 20.3 Radioactive Decay
    5. 20.4 Transmutation and Nuclear Energy
    6. 20.5 Uses of Radioisotopes
    7. 20.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  22. 21 Organic Chemistry
    1. Introduction
    2. 21.1 Hydrocarbons
    3. 21.2 Alcohols and Ethers
    4. 21.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 21.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index

Learning Objectives

By the end of this section, you will be able to:
  • Describe the preparation, properties, and uses of some representative metal carbonates

The chemistry of carbon is extensive; however, most of this chemistry is not relevant to this chapter. The other aspects of the chemistry of carbon will appear in the chapter covering organic chemistry. In this chapter, we will focus on the carbonate ion and related substances. The metals of groups 1 and 2, as well as zinc, cadmium, mercury, and lead(II), form ionic carbonates—compounds that contain the carbonate anions, CO32−.CO32−. The metals of group 1, magnesium, calcium, strontium, and barium also form hydrogen carbonates—compounds that contain the hydrogen carbonate anion, HCO3,HCO3, also known as the bicarbonate anion.

With the exception of magnesium carbonate, it is possible to prepare carbonates of the metals of groups 1 and 2 by the reaction of carbon dioxide with the respective oxide or hydroxide. Examples of such reactions include:

Na2O(s)+CO2(g)Na2CO3(s)Na2O(s)+CO2(g)Na2CO3(s)
18.65
Ca(OH)2(s)+CO2(g)CaCO3(s)+H2O(l)Ca(OH)2(s)+CO2(g)CaCO3(s)+H2O(l)
18.66

The carbonates of the alkaline earth metals of group 12 and lead(II) are not soluble. These carbonates precipitate upon mixing a solution of soluble alkali metal carbonate with a solution of soluble salts of these metals. Examples of net ionic equations for the reactions are:

Ca2+(aq)+CO32−(aq)CaCO3(s)Ca2+(aq)+CO32−(aq)CaCO3(s)
18.67
Pb2+(aq)+CO32−(aq)PbCO3(s)Pb2+(aq)+CO32−(aq)PbCO3(s)
18.68

Pearls and the shells of most mollusks are calcium carbonate. Tin(II) or one of the trivalent or tetravalent ions such as Al3+ or Sn4+ behave differently in this reaction as carbon dioxide and the corresponding oxide form instead of the carbonate.

Alkali metal hydrogen carbonates such as NaHCO3 and CsHCO3 form by saturating a solution of the hydroxides with carbon dioxide. The net ionic reaction involves hydroxide ion and carbon dioxide:

OH(aq)+CO2(aq)HCO3(aq)OH(aq)+CO2(aq)HCO3(aq)
18.69

It is possible to isolate the solids by evaporation of the water from the solution.

Although they are insoluble in pure water, alkaline earth carbonates dissolve readily in water containing carbon dioxide because hydrogen carbonate salts form. For example, caves and sinkholes form in limestone when CaCO3 dissolves in water containing dissolved carbon dioxide:

CaCO3(s)+CO2(aq)+H2O(l)Ca2+(aq)+2HCO3(aq)CaCO3(s)+CO2(aq)+H2O(l)Ca2+(aq)+2HCO3(aq)
18.70

Hydrogen carbonates of the alkaline earth metals remain stable only in solution; evaporation of the solution produces the carbonate. Stalactites and stalagmites, like those shown in Figure 18.30, form in caves when drops of water containing dissolved calcium hydrogen carbonate evaporate to leave a deposit of calcium carbonate.

Two photographs are shown and labeled, “a” and “b.” Photo a shows stalactites clinging to the ceiling of a cave while photo b shows a stalagmite growing from the floor of a cave.
Figure 18.30 (a) Stalactites and (b) stalagmites are cave formations of calcium carbonate. (credit a: modification of work by Arvind Govindaraj; credit b: modification of work by the National Park Service.)

The two carbonates used commercially in the largest quantities are sodium carbonate and calcium carbonate. In the United States, sodium carbonate is extracted from the mineral trona, Na3(CO3)(HCO3)(H2O)2. Following recrystallization to remove clay and other impurities, heating the recrystallized trona produces Na2CO3:

2Na3(CO3)(HCO3)(H2O)2(s)3Na2CO3(s)+5H2O(l)+CO2(g)2Na3(CO3)(HCO3)(H2O)2(s)3Na2CO3(s)+5H2O(l)+CO2(g)
18.71

Carbonates are moderately strong bases. Aqueous solutions are basic because the carbonate ion accepts hydrogen ion from water in this reversible reaction:

CO32−(aq)+H2O(l)HCO3(aq)+OH(aq)CO32−(aq)+H2O(l)HCO3(aq)+OH(aq)
18.72

Carbonates react with acids to form salts of the metal, gaseous carbon dioxide, and water. The reaction of calcium carbonate, the active ingredient of the antacid Tums, with hydrochloric acid (stomach acid), as shown in Figure 18.31, illustrates the reaction:

CaCO3(s)+2HCl(aq)CaCl2(aq)+CO2(g)+H2O(l)CaCO3(s)+2HCl(aq)CaCl2(aq)+CO2(g)+H2O(l)
18.73
A photograph of a watch glass full of a white solid is shown. A plastic pipette drips a colorless liquid into the solid, causing bubbles.
Figure 18.31 The reaction of calcium carbonate with hydrochloric acid is shown. (credit: Mark Ott)

Other applications of carbonates include glass making—where carbonate ions serve as a source of oxide ions—and synthesis of oxides.

Hydrogen carbonates are amphoteric because they act as both weak acids and weak bases. Hydrogen carbonate ions act as acids and react with solutions of soluble hydroxides to form a carbonate and water:

KHCO3(aq)+KOH(aq)K2CO3(aq)+H2O(l)KHCO3(aq)+KOH(aq)K2CO3(aq)+H2O(l)
18.74

With acids, hydrogen carbonates form a salt, carbon dioxide, and water. Baking soda (bicarbonate of soda or sodium bicarbonate) is sodium hydrogen carbonate. Baking powder contains baking soda and a solid acid such as potassium hydrogen tartrate (cream of tartar), KHC4H4O6. As long as the powder is dry, no reaction occurs; immediately after the addition of water, the acid reacts with the hydrogen carbonate ions to form carbon dioxide:

HC4H4O6(aq)+HCO3(aq)C4H4O62−(aq)+CO2(g)+H2O(l)HC4H4O6(aq)+HCO3(aq)C4H4O62−(aq)+CO2(g)+H2O(l)
18.75

Dough will trap the carbon dioxide, causing it to expand during baking, producing the characteristic texture of baked goods.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first/pages/1-introduction
Citation information

© Feb 15, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.