Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Chemistry: Atoms First 2e

17.2 Factors Affecting Reaction Rates

Chemistry: Atoms First 2e17.2 Factors Affecting Reaction Rates

Learning Objectives

By the end of this section, you will be able to:

  • Describe the effects of chemical nature, physical state, temperature, concentration, and catalysis on reaction rates

The rates at which reactants are consumed and products are formed during chemical reactions vary greatly. Five factors typically affecting the rates of chemical reactions will be explored in this section: the chemical nature of the reacting substances, the state of subdivision (one large lump versus many small particles) of the reactants, the temperature of the reactants, the concentration of the reactants, and the presence of a catalyst.

The Chemical Nature of the Reacting Substances

The rate of a reaction depends on the nature of the participating substances. Reactions that appear similar may have different rates under the same conditions, depending on the identity of the reactants. For example, when small pieces of the metals iron and sodium are exposed to air, the sodium reacts completely with air overnight, whereas the iron is barely affected. The active metals calcium and sodium both react with water to form hydrogen gas and a base. Yet calcium reacts at a moderate rate, whereas sodium reacts so rapidly that the reaction is almost explosive.

The Physical States of the Reactants

A chemical reaction between two or more substances requires intimate contact between the reactants. When reactants are in different physical states, or phases (solid, liquid, gaseous, dissolved), the reaction takes place only at the interface between the phases. Consider the heterogeneous reaction between a solid phase and either a liquid or gaseous phase. Compared with the reaction rate for large solid particles, the rate for smaller particles will be greater because the surface area in contact with the other reactant phase is greater. For example, large pieces of iron react more slowly with acids than they do with finely divided iron powder (Figure 17.6). Large pieces of wood smolder, smaller pieces burn rapidly, and saw dust burns explosively.

This figure shows two photos labeled (a) and (b). Photo (a) shows the bottom of a test tube. The test tube is filled with a dark gas, and there is a dark substance and bubbles in the bottom. Photo (b) shows a rod and bubbles in a test tube similar to photo (a), but the gas in the test tube is not as dark.
Figure 17.6 (a) Iron powder reacts rapidly with dilute hydrochloric acid and produces bubbles of hydrogen gas: Fe(s) + HCl(aq) ⟶⟶ 2FeCl2(aq) + 3H2(g). (b) An iron nail reacts more slowly because the surface area exposed to the acid is much less.

Temperature of the Reactants

Chemical reactions typically occur faster at higher temperatures. Food can spoil quickly when left on the kitchen counter. However, the lower temperature inside of a refrigerator slows that process so that the same food remains fresh for days. Gas burners, hot plates, and ovens are often used in the laboratory to increase the speed of reactions that proceed slowly at ordinary temperatures. For many chemical processes, reaction rates are approximately doubled when the temperature is raised by 10 °C.

Concentrations of the Reactants

The rates of many reactions depend on the concentrations of the reactants. Rates usually increase when the concentration of one or more of the reactants increases. For example, calcium carbonate (CaCO3) deteriorates as a result of its reaction with the pollutant sulfur dioxide. The rate of this reaction depends on the amount of sulfur dioxide in the air (Figure 17.7). An acidic oxide, sulfur dioxide combines with water vapor in the air to produce sulfurous acid in the following reaction:

SO2(g)+H2O(g)⟶H2SO3(aq)SO2(g)+H2O(g)⟶H2SO3(aq)

Calcium carbonate reacts with sulfurous acid as follows:

CaCO3(s)+H2SO3(aq)⟶CaSO3(aq)+CO2(g)+H2O(l)CaCO3(s)+H2SO3(aq)⟶CaSO3(aq)+CO2(g)+H2O(l)

In a polluted atmosphere where the concentration of sulfur dioxide is high, calcium carbonate deteriorates more rapidly than in less polluted air. Similarly, phosphorus burns much more rapidly in an atmosphere of pure oxygen than in air, which is only about 20% oxygen.

A photograph is shown of an angel statue. While some details of the statue, including facial features, are present, effects of weathering appear to be diminishing these features.
Figure 17.7 Statues made from carbonate compounds such as limestone and marble typically weather slowly over time due to the actions of water, and thermal expansion and contraction. However, pollutants like sulfur dioxide can accelerate weathering. As the concentration of air pollutants increases, deterioration of limestone occurs more rapidly. (credit: James P Fisher III)

The Presence of a Catalyst

Relatively dilute aqueous solutions of hydrogen peroxide, H2O2, are commonly used as topical antiseptics. Hydrogen peroxide decomposes to yield water and oxygen gas according to the equation:

2H2O2(aq)⟶2H2O(l)+O2(g)2H2O2(aq)⟶2H2O(l)+O2(g)

Under typical conditions, this decomposition occurs very slowly. When dilute H2O2(aq) is poured onto an open wound, however, the reaction occurs rapidly and the solution foams because of the vigorous production of oxygen gas. This dramatic difference is caused by the presence of substances within the wound’s exposed tissues that accelerate the decomposition process. Substances that function to increase the rate of a reaction are called catalysts, a topic treated in greater detail later in this chapter.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
Citation information

© Jun 3, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.