Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  4. 3 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 3.1 Electromagnetic Energy
    3. 3.2 The Bohr Model
    4. 3.3 Development of Quantum Theory
    5. 3.4 Electronic Structure of Atoms (Electron Configurations)
    6. 3.5 Periodic Variations in Element Properties
    7. 3.6 The Periodic Table
    8. 3.7 Molecular and Ionic Compounds
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  5. 4 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 4.1 Ionic Bonding
    3. 4.2 Covalent Bonding
    4. 4.3 Chemical Nomenclature
    5. 4.4 Lewis Symbols and Structures
    6. 4.5 Formal Charges and Resonance
    7. 4.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  6. 5 Advanced Theories of Bonding
    1. Introduction
    2. 5.1 Valence Bond Theory
    3. 5.2 Hybrid Atomic Orbitals
    4. 5.3 Multiple Bonds
    5. 5.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  7. 6 Composition of Substances and Solutions
    1. Introduction
    2. 6.1 Formula Mass
    3. 6.2 Determining Empirical and Molecular Formulas
    4. 6.3 Molarity
    5. 6.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  8. 7 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 7.1 Writing and Balancing Chemical Equations
    3. 7.2 Classifying Chemical Reactions
    4. 7.3 Reaction Stoichiometry
    5. 7.4 Reaction Yields
    6. 7.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  9. 8 Gases
    1. Introduction
    2. 8.1 Gas Pressure
    3. 8.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 8.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 8.4 Effusion and Diffusion of Gases
    6. 8.5 The Kinetic-Molecular Theory
    7. 8.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  10. 9 Thermochemistry
    1. Introduction
    2. 9.1 Energy Basics
    3. 9.2 Calorimetry
    4. 9.3 Enthalpy
    5. 9.4 Strengths of Ionic and Covalent Bonds
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Spontaneity
    3. 12.2 Entropy
    4. 12.3 The Second and Third Laws of Thermodynamics
    5. 12.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salts
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Coupled Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Electrochemistry
    1. Introduction
    2. 16.1 Review of Redox Chemistry
    3. 16.2 Galvanic Cells
    4. 16.3 Electrode and Cell Potentials
    5. 16.4 Potential, Free Energy, and Equilibrium
    6. 16.5 Batteries and Fuel Cells
    7. 16.6 Corrosion
    8. 16.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  18. 17 Kinetics
    1. Introduction
    2. 17.1 Chemical Reaction Rates
    3. 17.2 Factors Affecting Reaction Rates
    4. 17.3 Rate Laws
    5. 17.4 Integrated Rate Laws
    6. 17.5 Collision Theory
    7. 17.6 Reaction Mechanisms
    8. 17.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Nuclear Chemistry
    1. Introduction
    2. 20.1 Nuclear Structure and Stability
    3. 20.2 Nuclear Equations
    4. 20.3 Radioactive Decay
    5. 20.4 Transmutation and Nuclear Energy
    6. 20.5 Uses of Radioisotopes
    7. 20.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  22. 21 Organic Chemistry
    1. Introduction
    2. 21.1 Hydrocarbons
    3. 21.2 Alcohols and Ethers
    4. 21.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 21.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index
An image depicts three tan squares, lying side-by-side along the upper left corner. Two of the same squares also lie side-by-side in the lower right corner. Each square has a black dot in the center. One of the squares is labeled, “C O subscript 2,” and has a double-headed arrow pointing from it to a red tube-like structure that runs between the squares across the image from the upper right to the lower left. This arrow is labeled, “C O subscript 2 dissolved in plasma.” The red tube has two round red shapes in it, and the upper one is labeled, “C O subscript 2 carried in red blood cells.” The gaps between the squares and the red tube are colored light blue. One of the squares along the top of the image is labeled, “C O subscript 2,” and is connected by a double-headed arrow to an equation in the red tube that is labeled, “C O subscript 2, a plus sign, H subscript 2 O, right-facing arrow, H subscript 2 C O subscript 3, right-facing arrow, H C O subscript 3 superscript negative sign, plus sign, H superscript positive sign.” The compound “H C O subscript 3 superscript negative sign” is then connected by a double-headed arrow to the space in the red tube and is labeled, “H C O subscript 3 superscript negative sign dissolved in plasma as carbonic acid.”
Figure 13.1 Transport of carbon dioxide in the body involves several reversible chemical reactions, including hydrolysis and acid ionization (among others).

Imagine a beach populated with sunbathers and swimmers. As those basking in the sun get too hot, they enter the surf to swim and cool off. As the swimmers tire, they return to the beach to rest. If the rate at which sunbathers enter the surf were to equal the rate at which swimmers return to the sand, then the numbers (though not the identities) of sunbathers and swimmers would remain constant. This scenario illustrates a dynamic phenomenon known as equilibrium, in which opposing processes occur at equal rates. Chemical and physical processes are subject to this phenomenon; these processes are at equilibrium when the forward and reverse reaction rates are equal. Equilibrium systems are pervasive in nature; the various reactions involving carbon dioxide dissolved in blood are examples (see Figure 13.1). This chapter provides a thorough introduction to the essential aspects of chemical equilibria.

We now have a good understanding of chemical and physical change that allow us to determine, for any given process:

  1. Whether the process is endothermic or exothermic
  2. Whether the process is accompanied by an increase of decrease in entropy
  3. Whether a process will be spontaneous, non-spontaneous, or what we have called an equilibrium process

Recall that when the value ∆G for a reaction is zero, we consider there to be no free energy change—that is, no free energy available to do useful work. Does this mean a reaction where ΔG = 0 comes to a complete halt? No, it does not. Just as a liquid exists in equilibrium with its vapor in a closed container, where the rates of evaporation and condensation are equal, there is a connection to the state of equilibrium for a phase change or a chemical reaction. That is, at equilibrium, the forward and reverse rates of reaction are equal. We will develop that concept and extend it to a relationship between equilibrium and free energy later in this chapter.

In the explanation that follows, we will use the term Q to refer to any reactant or product concentration or pressure. When the concentrations or pressure of reactants and products are at equilibrium, the term K will be used. This will be more clearly explained as we go along in this chapter.

Now we will consider the connection between the free energy change and the equilibrium constant. The fundamental relationship is:
G°=−RTlnKG°=−RTlnK—this can be for KcKc or KpKp (and we will see later, any equilibrium constant we encounter).

We also know that the form of K can be used in non-equilibrium conditions as the reaction quotient, Q. The defining relationship here is

G=G°+RTlnQG=G°+RTlnQ

Without the superscript, the value of ∆G can be calculated for any set of concentrations.

Note that since Q is a mass-action reaction of productions/reactants, as a reaction proceeds from left to right, product concentrations increase as reactant concentrations decrease, until Q = K, and at which time ∆G becomes zero:
0=G°+RTlnK0=G°+RTlnK, a relationship that reduces to our defining connection between Q and K.

Thus, we can see clearly that as a reaction moves toward equilibrium, the value of ∆G goes to zero.

Now, think back to the connection between the signs of ∆G° and ∆H°

H° S° Result
Negative Positive Always spontaneous
Positive Negative Never spontaneous
Positive Positive Spontaneous at high temperatures
Negative Negative Spontaneous at low temperatures

Only in the last two cases is there a point at which the process swings from spontaneous to non-spontaneous (or the reverse); in these cases, the process must pass through equilibrium when the change occurs. The concept of the connection between the free energy change and the equilibrium constant is an important one that we will expand upon in future sections. The fact that the change in free energy for an equilibrium process is zero, and that displacement of a process from that zero point results in a drive to re-establish equilibrium is fundamental to understanding the behavior of chemical reactions and phase changes.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
Citation information

© Feb 14, 2019 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.