Skip to Content
OpenStax Logo
Chemistry 2e

Chapter 8

Chemistry 2eChapter 8
Buy book
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. 2.5 The Periodic Table
    7. 2.6 Molecular and Ionic Compounds
    8. 2.7 Chemical Nomenclature
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  4. 3 Composition of Substances and Solutions
    1. Introduction
    2. 3.1 Formula Mass and the Mole Concept
    3. 3.2 Determining Empirical and Molecular Formulas
    4. 3.3 Molarity
    5. 3.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  5. 4 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 4.1 Writing and Balancing Chemical Equations
    3. 4.2 Classifying Chemical Reactions
    4. 4.3 Reaction Stoichiometry
    5. 4.4 Reaction Yields
    6. 4.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  6. 5 Thermochemistry
    1. Introduction
    2. 5.1 Energy Basics
    3. 5.2 Calorimetry
    4. 5.3 Enthalpy
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  7. 6 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 6.1 Electromagnetic Energy
    3. 6.2 The Bohr Model
    4. 6.3 Development of Quantum Theory
    5. 6.4 Electronic Structure of Atoms (Electron Configurations)
    6. 6.5 Periodic Variations in Element Properties
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  8. 7 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 7.1 Ionic Bonding
    3. 7.2 Covalent Bonding
    4. 7.3 Lewis Symbols and Structures
    5. 7.4 Formal Charges and Resonance
    6. 7.5 Strengths of Ionic and Covalent Bonds
    7. 7.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  9. 8 Advanced Theories of Covalent Bonding
    1. Introduction
    2. 8.1 Valence Bond Theory
    3. 8.2 Hybrid Atomic Orbitals
    4. 8.3 Multiple Bonds
    5. 8.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  10. 9 Gases
    1. Introduction
    2. 9.1 Gas Pressure
    3. 9.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 9.4 Effusion and Diffusion of Gases
    6. 9.5 The Kinetic-Molecular Theory
    7. 9.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Kinetics
    1. Introduction
    2. 12.1 Chemical Reaction Rates
    3. 12.2 Factors Affecting Reaction Rates
    4. 12.3 Rate Laws
    5. 12.4 Integrated Rate Laws
    6. 12.5 Collision Theory
    7. 12.6 Reaction Mechanisms
    8. 12.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salts
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Coupled Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Thermodynamics
    1. Introduction
    2. 16.1 Spontaneity
    3. 16.2 Entropy
    4. 16.3 The Second and Third Laws of Thermodynamics
    5. 16.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  18. 17 Electrochemistry
    1. Introduction
    2. 17.1 Review of Redox Chemistry
    3. 17.2 Galvanic Cells
    4. 17.3 Electrode and Cell Potentials
    5. 17.4 Potential, Free Energy, and Equilibrium
    6. 17.5 Batteries and Fuel Cells
    7. 17.6 Corrosion
    8. 17.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Organic Chemistry
    1. Introduction
    2. 20.1 Hydrocarbons
    3. 20.2 Alcohols and Ethers
    4. 20.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 20.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  22. 21 Nuclear Chemistry
    1. Introduction
    2. 21.1 Nuclear Structure and Stability
    3. 21.2 Nuclear Equations
    4. 21.3 Radioactive Decay
    5. 21.4 Transmutation and Nuclear Energy
    6. 21.5 Uses of Radioisotopes
    7. 21.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index
1.

Similarities: Both types of bonds result from overlap of atomic orbitals on adjacent atoms and contain a maximum of two electrons. Differences: σ bonds are stronger and result from end-to-end overlap and all single bonds are σ bonds; π bonds between the same two atoms are weaker because they result from side-by-side overlap, and multiple bonds contain one or more π bonds (in addition to a σ bond).

3.

The specific average bond distance is the distance with the lowest energy. At distances less than the bond distance, the positive charges on the two nuclei repel each other, and the overall energy increases.

5.

Bonding: One σ bond and one π bond. The s orbitals are filled and do not overlap. The p orbitals overlap along the axis to form a σ bond and side-by-side to form the π bond.

This figure shows the orbitals of two atoms being added together as they form bonds. The two atoms are shown separately on the right, each having two peanut-shaped orbitals lying perpendicularly to one another. A right-facing arrow shows that the two have moved closer together and now the upper and lower portions of the vertical peanut-shaped orbitals are shown as merging together above and below the plane of the molecule while the horizontal peanut-shaped orbitals are overlapping between the two nuclei.
7.

No, two of the p orbitals (one on each N) will be oriented end-to-end and will form a σ bond.

Two nitrogen atoms are shown both in a Lewis structure and as a diagram. The Lewis structure depicts the two nitrogen atoms bonded by a triple bond. The diagram shows two nitrogen atoms and their three peanut-shaped p-orbitals. One of the orbitals lies horizontally and overlaps between the two nuclei. It is labeled, “sigma bond.” The other two lie vertically and in the z-plane of the page. They overlap above and below and into and out of the page in relation to the nuclei. They are each labeled, “pi bond.”
9.

Hybridization is introduced to explain the geometry of bonding orbitals in valance bond theory.

11.

There are no d orbitals in the valence shell of carbon.

13.

trigonal planar, sp2; trigonal pyramidal (one lone pair on A) sp3; T-shaped (two lone pairs on A sp3d, or (three lone pairs on A) sp3d2

15.

(a) Each S has a bent (109°) geometry, sp3

A Lewis structure is shown in which eight sulfur atoms, each with two lone pairs of eletrons, are single bonded together into an eight-sided ring.


(b) Bent (120°), sp2

Two Lewis structure are shown, connected by a double-ended arrow. The left structure shows a sulfur atom with one lone pair of electrons double bonded to an oxygen atom with two lone pairs of electrons on the left and single bonded to an oxygen atom with three lone pairs of electrons on the right. The right structure shows the same molecule, except that the double bonded oxygen is on the right side of the sulfur and the single bonded oxygen is to the left of the sulfur.


(c) Trigonal planar, sp2

A Lewis structure of a sulfur atom singly bonded to two oxygen atoms, each with three lone pairs of electrons, and double bonded to a third oxygen atom with two lone pairs of electrons is shown.


(d) Tetrahedral, sp3

A Lewis structure is shown in which a sulfur atom is single bonded to four oxygen atoms. Two of the oxygen atoms have three lone pairs of electrons while the other two each have two lone pairs of electrons and are each singly bonded to a hydrogen atom.
17.

(a) XeF2
(b)

A Lewis structure is shown in which a xenon atom that has three lone pairs of electrons is single bonded to two fluorine atoms, each of which has three lone pairs of electrons.


(c) linear (d) sp3d

19.

(a)

Two Lewis structure are shown, the left of which depicts three phosphorus atoms single bonded together to form a triangle. Each phosphorus is bonded to a sulfur atom by a vertical single bond and each of those sulfur atoms is then bonded to a single phosphorus atom so that a six-sided ring is created with a sulfur in the middle. Each sulfur atom in this structure has two lone pairs of electrons while each phosphorus has one lone pair. The second Lewis structure shows a chlorine atom with one lone pair of electrons single bonded to three oxygen atoms, each of which has three lone pairs of electrons.


(b) P atoms, trigonal pyramidal; S atoms, bent, with two lone pairs; Cl atoms, trigonal pyramidal; (c) Hybridization about P, S, and Cl is, in all cases, sp3; (d) Oxidation states P +1, S113,113, Cl +5, O –2. Formal charges: P 0; S 0; Cl +2: O –1

21.
Two Lewis structures are shown. The left structure shows a nitrogen atom with one lone pair of electrons single bonded to three fluorine atoms, each of which has three lone pairs of electrons. The right structure shows a phosphorus atoms single bonded to five fluorine atoms, each of which has three lone pairs of electrons.

Phosphorus and nitrogen can form sp3 hybrids to form three bonds and hold one lone pair in PF3 and NF3, respectively. However, nitrogen has no valence d orbitals, so it cannot form a set of sp3d hybrid orbitals to bind five fluorine atoms in NF5. Phosphorus has d orbitals and can bind five fluorine atoms with sp3d hybrid orbitals in PF5.

23.

A triple bond consists of one σ bond and two π bonds. A σ bond is stronger than a π bond due to greater overlap.

25.

(a)

A Lewis structure is shown in which a carbon atom is attached by single bonds to three hydrogen atoms. It is also attached by a single bond to a carbon atom that is triple bonded to a nitrogen atom with one lone electron pair. Below the structure is a right facing arrow with its head near the nitrogen and its tail, which looks like a plus sign, located near the carbon atoms. The arrow is labeled, “dipole moment.”


(b) The terminal carbon atom uses sp3 hybrid orbitals, while the central carbon atom is sp hybridized. (c) Each of the two π bonds is formed by overlap of a 2p orbital on carbon and a nitrogen 2p orbital.

27.

(a) sp2; (b) sp; (c) sp2; (d) sp3; (e) sp3; (f) sp3d; (g) sp3

29.

(a) sp2, delocalized; (b) sp, localized; (c) sp2, delocalized; (d) sp3, delocalized

31.
A diagram is shown in two parts, connected by a right facing arrow labeled, “Hybridization.” The left diagram shows an up-facing arrow labeled, “E.” To the lower right of the arrow is a short, horizontal line labeled, “2 s,” that has two vertical half-arrows facing up and down on it. To the upper right of the arrow are a series of three short, horizontal lines labeled, “2 p.” Above both sets of lines is the phrase, “Orbitals in an isolated C atom.” There are two upward facing arrows on two of these lines. The right side of the diagram shows two short, horizontal lines placed halfway up the space and each labeled, “s p.” An upward-facing half arrow is drawn vertically on each line. Above these lines are two other short, horizontal lines, each labeled, “2 p,” and which have two upward facing arrows on them. Above both sets of lines is the phrase, “Orbitals in the s p hybridized C in C O subscript 2.”

Each of the four electrons is in a separate orbital and overlaps with an electron on an oxygen atom.

33.

(a) Similarities: Both are bonding orbitals that can contain a maximum of two electrons. Differences: σ orbitals are end-to-end combinations of atomic orbitals, whereas π orbitals are formed by side-by-side overlap of orbitals. (b) Similarities: Both are quantum-mechanical constructs that represent the probability of finding the electron about the atom or the molecule. Differences: ψ for an atomic orbital describes the behavior of only one electron at a time based on the atom. For a molecule, ψ represents a mathematical combination of atomic orbitals. (c) Similarities: Both are orbitals that can contain two electrons. Differences: Bonding orbitals result in holding two or more atoms together. Antibonding orbitals have the effect of destabilizing any bonding that has occurred.

35.

An odd number of electrons can never be paired, regardless of the arrangement of the molecular orbitals. It will always be paramagnetic.

37.

Bonding orbitals have electron density in close proximity to more than one nucleus. The interaction between the bonding positively charged nuclei and negatively charged electrons stabilizes the system.

39.

The pairing of the two bonding electrons lowers the energy of the system relative to the energy of the nonbonded electrons.

41.

(a) H2 bond order = 1, H2+H2+ bond order = 0.5, H2H2 bond order = 0.5, strongest bond is H2; (b) O2 bond order = 2, O22+O22+ bond order = 3; O22−O22− bond order = 1, strongest bond is O22+;O22+; (c) Li2 bond order = 1, Be2+Be2+ bond order = 0.5, Be2 bond order = 0, strongest bond is Li2Li2;(d) F2 bond order = 1, F2+F2+ bond order = 1.5, F2F2 bond order = 0.5, strongest bond is F2+;F2+; (e) N2 bond order = 3, N2+N2+ bond order = 2.5, N2N2 bond order = 2.5, strongest bond is N2

43.

(a) H2; (b) N2; (c) O; (d) C2; (e) B2

45.

Yes, fluorine is a smaller atom than Li, so atoms in the 2s orbital are closer to the nucleus and more stable.

47.

2+

49.

N2 has s-p mixing, so the π orbitals are the last filled in N22+.N22+. O2 does not have s-p mixing, so the σp orbital fills before the π orbitals.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
Citation information

© Feb 14, 2019 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.