Skip to Content
OpenStax Logo
Chemistry 2e

Exercises

Chemistry 2eExercises
Buy book
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. 2.5 The Periodic Table
    7. 2.6 Molecular and Ionic Compounds
    8. 2.7 Chemical Nomenclature
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  4. 3 Composition of Substances and Solutions
    1. Introduction
    2. 3.1 Formula Mass and the Mole Concept
    3. 3.2 Determining Empirical and Molecular Formulas
    4. 3.3 Molarity
    5. 3.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  5. 4 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 4.1 Writing and Balancing Chemical Equations
    3. 4.2 Classifying Chemical Reactions
    4. 4.3 Reaction Stoichiometry
    5. 4.4 Reaction Yields
    6. 4.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  6. 5 Thermochemistry
    1. Introduction
    2. 5.1 Energy Basics
    3. 5.2 Calorimetry
    4. 5.3 Enthalpy
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  7. 6 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 6.1 Electromagnetic Energy
    3. 6.2 The Bohr Model
    4. 6.3 Development of Quantum Theory
    5. 6.4 Electronic Structure of Atoms (Electron Configurations)
    6. 6.5 Periodic Variations in Element Properties
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  8. 7 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 7.1 Ionic Bonding
    3. 7.2 Covalent Bonding
    4. 7.3 Lewis Symbols and Structures
    5. 7.4 Formal Charges and Resonance
    6. 7.5 Strengths of Ionic and Covalent Bonds
    7. 7.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  9. 8 Advanced Theories of Covalent Bonding
    1. Introduction
    2. 8.1 Valence Bond Theory
    3. 8.2 Hybrid Atomic Orbitals
    4. 8.3 Multiple Bonds
    5. 8.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  10. 9 Gases
    1. Introduction
    2. 9.1 Gas Pressure
    3. 9.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 9.4 Effusion and Diffusion of Gases
    6. 9.5 The Kinetic-Molecular Theory
    7. 9.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Kinetics
    1. Introduction
    2. 12.1 Chemical Reaction Rates
    3. 12.2 Factors Affecting Reaction Rates
    4. 12.3 Rate Laws
    5. 12.4 Integrated Rate Laws
    6. 12.5 Collision Theory
    7. 12.6 Reaction Mechanisms
    8. 12.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salts
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Coupled Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Thermodynamics
    1. Introduction
    2. 16.1 Spontaneity
    3. 16.2 Entropy
    4. 16.3 The Second and Third Laws of Thermodynamics
    5. 16.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  18. 17 Electrochemistry
    1. Introduction
    2. 17.1 Review of Redox Chemistry
    3. 17.2 Galvanic Cells
    4. 17.3 Electrode and Cell Potentials
    5. 17.4 Potential, Free Energy, and Equilibrium
    6. 17.5 Batteries and Fuel Cells
    7. 17.6 Corrosion
    8. 17.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Organic Chemistry
    1. Introduction
    2. 20.1 Hydrocarbons
    3. 20.2 Alcohols and Ethers
    4. 20.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 20.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  22. 21 Nuclear Chemistry
    1. Introduction
    2. 21.1 Nuclear Structure and Stability
    3. 21.2 Nuclear Equations
    4. 21.3 Radioactive Decay
    5. 21.4 Transmutation and Nuclear Energy
    6. 21.5 Uses of Radioisotopes
    7. 21.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index

2.1 Early Ideas in Atomic Theory

1.

In the following drawing, the green spheres represent atoms of a certain element. The purple spheres represent atoms of another element. If the spheres of different elements touch, they are part of a single unit of a compound. The following chemical change represented by these spheres may violate one of the ideas of Dalton’s atomic theory. Which one?

This equation contains the starting materials of a single, green sphere plus two smaller, purple spheres bonded together. When the starting materials are added together the products of the change are one purple sphere bonded with one green sphere plus one purple sphere bonded with one green sphere.
2.

Which postulate of Dalton’s theory is consistent with the following observation concerning the weights of reactants and products? When 100 grams of solid calcium carbonate is heated, 44 grams of carbon dioxide and 56 grams of calcium oxide are produced.

3.

Identify the postulate of Dalton’s theory that is violated by the following observations: 59.95% of one sample of titanium dioxide is titanium; 60.10% of a different sample of titanium dioxide is titanium.

4.

Samples of compound X, Y, and Z are analyzed, with results shown here.

CompoundDescriptionMass of CarbonMass of Hydrogen
Xclear, colorless, liquid with strong odor1.776 g0.148 g
Yclear, colorless, liquid with strong odor1.974 g0.329 g
Zclear, colorless, liquid with strong odor7.812 g0.651 g

Do these data provide example(s) of the law of definite proportions, the law of multiple proportions, neither, or both? What do these data tell you about compounds X, Y, and Z?

2.2 Evolution of Atomic Theory

5.

The existence of isotopes violates one of the original ideas of Dalton’s atomic theory. Which one?

6.

How are electrons and protons similar? How are they different?

7.

How are protons and neutrons similar? How are they different?

8.

Predict and test the behavior of α particles fired at a “plum pudding” model atom.

(a) Predict the paths taken by α particles that are fired at atoms with a Thomson’s plum pudding model structure. Explain why you expect the α particles to take these paths.

(b) If α particles of higher energy than those in (a) are fired at plum pudding atoms, predict how their paths will differ from the lower-energy α particle paths. Explain your reasoning.

(c) Now test your predictions from (a) and (b). Open the Rutherford Scattering simulation and select the “Plum Pudding Atom” tab. Set “Alpha Particles Energy” to “min,” and select “show traces.” Click on the gun to start firing α particles. Does this match your prediction from (a)? If not, explain why the actual path would be that shown in the simulation. Hit the pause button, or “Reset All.” Set “Alpha Particles Energy” to “max,” and start firing α particles. Does this match your prediction from (b)? If not, explain the effect of increased energy on the actual paths as shown in the simulation.

9.

Predict and test the behavior of α particles fired at a Rutherford atom model.

(a) Predict the paths taken by α particles that are fired at atoms with a Rutherford atom model structure. Explain why you expect the α particles to take these paths.

(b) If α particles of higher energy than those in (a) are fired at Rutherford atoms, predict how their paths will differ from the lower-energy α particle paths. Explain your reasoning.

(c) Predict how the paths taken by the α particles will differ if they are fired at Rutherford atoms of elements other than gold. What factor do you expect to cause this difference in paths, and why?

(d) Now test your predictions from (a), (b), and (c). Open the Rutherford Scattering simulation and select the “Rutherford Atom” tab. Due to the scale of the simulation, it is best to start with a small nucleus, so select “20” for both protons and neutrons, “min” for energy, show traces, and then start firing α particles. Does this match your prediction from (a)? If not, explain why the actual path would be that shown in the simulation. Pause or reset, set energy to “max,” and start firing α particles. Does this match your prediction from (b)? If not, explain the effect of increased energy on the actual path as shown in the simulation. Pause or reset, select “40” for both protons and neutrons, “min” for energy, show traces, and fire away. Does this match your prediction from (c)? If not, explain why the actual path would be that shown in the simulation. Repeat this with larger numbers of protons and neutrons. What generalization can you make regarding the type of atom and effect on the path of α particles? Be clear and specific.

2.3 Atomic Structure and Symbolism

10.

In what way are isotopes of a given element always different? In what way(s) are they always the same?

11.

Write the symbol for each of the following ions:

(a) the ion with a 1+ charge, atomic number 55, and mass number 133

(b) the ion with 54 electrons, 53 protons, and 74 neutrons

(c) the ion with atomic number 15, mass number 31, and a 3− charge

(d) the ion with 24 electrons, 30 neutrons, and a 3+ charge

12.

Write the symbol for each of the following ions:

(a) the ion with a 3+ charge, 28 electrons, and a mass number of 71

(b) the ion with 36 electrons, 35 protons, and 45 neutrons

(c) the ion with 86 electrons, 142 neutrons, and a 4+ charge

(d) the ion with a 2+ charge, atomic number 38, and mass number 87

13.

Open the Build an Atom simulation and click on the Atom icon.

(a) Pick any one of the first 10 elements that you would like to build and state its symbol.

(b) Drag protons, neutrons, and electrons onto the atom template to make an atom of your element.
State the numbers of protons, neutrons, and electrons in your atom, as well as the net charge and mass number.

(c) Click on “Net Charge” and “Mass Number,” check your answers to (b), and correct, if needed.

(d) Predict whether your atom will be stable or unstable. State your reasoning.

(e) Check the “Stable/Unstable” box. Was your answer to (d) correct? If not, first predict what you can do to make a stable atom of your element, and then do it and see if it works. Explain your reasoning.

14.

Open the Build an Atom simulation.

(a) Drag protons, neutrons, and electrons onto the atom template to make a neutral atom of Oxygen-16 and give the isotope symbol for this atom.

(b) Now add two more electrons to make an ion and give the symbol for the ion you have created.

15.

Open the Build an Atom simulation.

(a) Drag protons, neutrons, and electrons onto the atom template to make a neutral atom of Lithium-6 and give the isotope symbol for this atom.

(b) Now remove one electron to make an ion and give the symbol for the ion you have created.

16.

Determine the number of protons, neutrons, and electrons in the following isotopes that are used in medical diagnoses:

(a) atomic number 9, mass number 18, charge of 1−

(b) atomic number 43, mass number 99, charge of 7+

(c) atomic number 53, atomic mass number 131, charge of 1−

(d) atomic number 81, atomic mass number 201, charge of 1+

(e) Name the elements in parts (a), (b), (c), and (d).

17.

The following are properties of isotopes of two elements that are essential in our diet. Determine the number of protons, neutrons and electrons in each and name them.

(a) atomic number 26, mass number 58, charge of 2+

(b) atomic number 53, mass number 127, charge of 1−

18.

Give the number of protons, electrons, and neutrons in neutral atoms of each of the following isotopes:

(a) 510B510B

(b) 80199Hg80199Hg

(c) 2963Cu2963Cu

(d) 613C613C

(e) 3477Se3477Se

19.

Give the number of protons, electrons, and neutrons in neutral atoms of each of the following isotopes:

(a) 37Li37Li

(b) 52125Te52125Te

(c) 47109Ag47109Ag

(d) 715N715N

(e) 1531P1531P

20.

Click on the site and select the “Mix Isotopes” tab, hide the “Percent Composition” and “Average Atomic Mass” boxes, and then select the element boron.

(a) Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts.

(b) Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice.

(c) Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on “More” and then move the sliders to the appropriate amounts.

(d) Reveal the “Percent Composition” and “Average Atomic Mass” boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction.

(e) Select “Nature’s” mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match “Nature’s” amounts as closely as possible.

21.

Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.

22.

An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99 amu, and 8.82% abundance with 21.99 amu. Calculate the average atomic mass of this element.

23.

Average atomic masses listed by IUPAC are based on a study of experimental results. Bromine has two isotopes, 79Br and 81Br, whose masses (78.9183 and 80.9163 amu, respectively) and abundances (50.69% and 49.31%, respectively) were determined in earlier experiments. Calculate the average atomic mass of bromine based on these experiments.

24.

Variations in average atomic mass may be observed for elements obtained from different sources. Lithium provides an example of this. The isotopic composition of lithium from naturally occurring minerals is 7.5% 6Li and 92.5% 7Li, which have masses of 6.01512 amu and 7.01600 amu, respectively. A commercial source of lithium, recycled from a military source, was 3.75% 6Li (and the rest 7Li). Calculate the average atomic mass values for each of these two sources.

25.

The average atomic masses of some elements may vary, depending upon the sources of their ores. Naturally occurring boron consists of two isotopes with accurately known masses (10B, 10.0129 amu and 11B, 11.00931 amu). The actual atomic mass of boron can vary from 10.807 to 10.819, depending on whether the mineral source is from Turkey or the United States. Calculate the percent abundances leading to the two values of the average atomic masses of boron from these two countries.

26.

The 18O:16O abundance ratio in some meteorites is greater than that used to calculate the average atomic mass of oxygen on earth. Is the average mass of an oxygen atom in these meteorites greater than, less than, or equal to that of a terrestrial oxygen atom?

2.4 Chemical Formulas

27.

Explain why the symbol for an atom of the element oxygen and the formula for a molecule of oxygen differ.

28.

Explain why the symbol for the element sulfur and the formula for a molecule of sulfur differ.

29.

Write the molecular and empirical formulas of the following compounds:

(a)

Figure A shows a carbon atom that forms two, separate double bonds with two oxygen atoms.


(b)

Figure B shows a hydrogen atom which forms a single bond with a carbon atom. The carbon atom forms a triple bond with another carbon atom. The second carbon atom forms a single bond with a hydrogen atom.


(c)

Figure C shows a carbon atom forming a double bond with another carbon atom. Each carbon atom forms a single bond with two hydrogen atoms.


(d)

Figure D shows a sulfur atom forming single bonds with four oxygen atoms. Two of the oxygen atoms form a single bond with a hydrogen atom.
30.

Write the molecular and empirical formulas of the following compounds:

(a)

Figure A shows a structural diagram of four carbon atoms bonded together into a chain. The two carbon atoms on the left form a double bond with each other. All of the remaining carbon atoms form single bonds with each other. The leftmost carbon also forms single bonds with two hydrogen. The second carbon in the chain forms a single bond with a hydrogen atom. The third carbon in the chain forms a single bond with two hydrogen atoms each. The rightmost carbon forms a single bond with three hydrogen atoms each.


(b)

Figure B shows a structural diagram of a molecule that has a chain of four carbon atoms. The leftmost carbon atom forms a single bond with three hydrogen atoms each and single bond with the second carbon atom. The second carbon atom forms a triple bond with the third carbon atom. The third carbon atom forms a single bond to the fourth carbon atom. The fourth carbon atom forms a single bond to three hydrogen atoms each.


(c)

Figure C shows a structural diagram of two silicon atoms are bonded together with a single bond. Each of the silicon atoms form single bonds to two chlorine atoms each and one hydrogen atom.


(d)

Figure D shows a structural diagram of a phosphorus atom that forms a single bond to four oxygen atoms each. Three of the oxygen atoms each have a single bond to a hydrogen atom.
31.

Determine the empirical formulas for the following compounds:

(a) caffeine, C8H10N4O2

(b) fructose, C12H22O11

(c) hydrogen peroxide, H2O2

(d) glucose, C6H12O6

(e) ascorbic acid (vitamin C), C6H8O6

32.

Determine the empirical formulas for the following compounds:

(a) acetic acid, C2H4O2

(b) citric acid, C6H8O7

(c) hydrazine, N2H4

(d) nicotine, C10H14N2

(e) butane, C4H10

33.

Write the empirical formulas for the following compounds:

(a)

Figure A shows a structural diagram of two carbon atoms that form a single bond with each other. The left carbon atom forms single bonds with hydrogen atoms each. The right carbon forms a double bond to an oxygen atom. The right carbon also forms a single bonded to another oxygen atom. This oxygen atom also forms a single bond to a hydrogen atom.


(b)

Figure B shows a structural diagram containing a leftmost carbon that forms single bonds to three hydrogen atoms each. This leftmost carbon also forms a single bond to a second carbon atom. The second carbon atom forms a double bond with an oxygen atom. The second carbon also forms a single bond to a second oxygen atom. This oxygen atom forms a single bond to a third carbon atom. This third carbon atom forms single bonds with two hydrogen atoms each as well as a single bond with another carbon atom. The rightmost carbon atom forms a single bond with three hydrogen atoms each.
34.

Open the Build a Molecule simulation and select the “Larger Molecules” tab. Select an appropriate atom’s “Kit” to build a molecule with two carbon and six hydrogen atoms. Drag atoms into the space above the “Kit” to make a molecule. A name will appear when you have made an actual molecule that exists (even if it is not the one you want). You can use the scissors tool to separate atoms if you would like to change the connections. Click on “3D” to see the molecule, and look at both the space-filling and ball-and-stick possibilities.

(a) Draw the structural formula of this molecule and state its name.

(b) Can you arrange these atoms in any way to make a different compound?

35.

Use the Build a Molecule simulation to repeat Exercise 2.34, but build a molecule with two carbons, six hydrogens, and one oxygen.

(a) Draw the structural formula of this molecule and state its name.

(b) Can you arrange these atoms to make a different molecule? If so, draw its structural formula and state its name.

(c) How are the molecules drawn in (a) and (b) the same? How do they differ? What are they called (the type of relationship between these molecules, not their names).?

36.

Use the Build a Molecule simulation to repeat Exercise 2.34, but build a molecule with three carbons, seven hydrogens, and one chlorine.

(a) Draw the structural formula of this molecule and state its name.

(b) Can you arrange these atoms to make a different molecule? If so, draw its structural formula and state its name.

(c) How are the molecules drawn in (a) and (b) the same? How do they differ? What are they called (the type of relationship between these molecules, not their names)?

2.5 The Periodic Table

37.

Using the periodic table, classify each of the following elements as a metal or a nonmetal, and then further classify each as a main-group (representative) element, transition metal, or inner transition metal:

(a) uranium

(b) bromine

(c) strontium

(d) neon

(e) gold

(f) americium

(g) rhodium

(h) sulfur

(i) carbon

(j) potassium

38.

Using the periodic table, classify each of the following elements as a metal or a nonmetal, and then further classify each as a main-group (representative) element, transition metal, or inner transition metal:

(a) cobalt

(b) europium

(c) iodine

(d) indium

(e) lithium

(f) oxygen

(g) cadmium

(h) terbium

(i) rhenium

39.

Using the periodic table, identify the lightest member of each of the following groups:

(a) noble gases

(b) alkaline earth metals

(c) alkali metals

(d) chalcogens

40.

Using the periodic table, identify the heaviest member of each of the following groups:

(a) alkali metals

(b) chalcogens

(c) noble gases

(d) alkaline earth metals

41.

Use the periodic table to give the name and symbol for each of the following elements:

(a) the noble gas in the same period as germanium

(b) the alkaline earth metal in the same period as selenium

(c) the halogen in the same period as lithium

(d) the chalcogen in the same period as cadmium

42.

Use the periodic table to give the name and symbol for each of the following elements:

(a) the halogen in the same period as the alkali metal with 11 protons

(b) the alkaline earth metal in the same period with the neutral noble gas with 18 electrons

(c) the noble gas in the same row as an isotope with 30 neutrons and 25 protons

(d) the noble gas in the same period as gold

43.

Write a symbol for each of the following neutral isotopes. Include the atomic number and mass number for each.

(a) the alkali metal with 11 protons and a mass number of 23

(b) the noble gas element with 75 neutrons in its nucleus and 54 electrons in the neutral atom

(c) the isotope with 33 protons and 40 neutrons in its nucleus

(d) the alkaline earth metal with 88 electrons and 138 neutrons

44.

Write a symbol for each of the following neutral isotopes. Include the atomic number and mass number for each.

(a) the chalcogen with a mass number of 125

(b) the halogen whose longest-lived isotope is radioactive

(c) the noble gas, used in lighting, with 10 electrons and 10 neutrons

(d) the lightest alkali metal with three neutrons

2.6 Molecular and Ionic Compounds

45.

Using the periodic table, predict whether the following chlorides are ionic or covalent: KCl, NCl3, ICl, MgCl2, PCl5, and CCl4.

46.

Using the periodic table, predict whether the following chlorides are ionic or covalent: SiCl4, PCl3, CaCl2, CsCl, CuCl2, and CrCl3.

47.

For each of the following compounds, state whether it is ionic or covalent. If it is ionic, write the symbols for the ions involved:

(a) NF3

(b) BaO

(c) (NH4)2CO3

(d) Sr(H2PO4)2

(e) IBr

(f) Na2O

48.

For each of the following compounds, state whether it is ionic or covalent, and if it is ionic, write the symbols for the ions involved:

(a) KClO4

(b) Mg(C2H3O2)2

(c) H2S

(d) Ag2S

(e) N2Cl4

(f) Co(NO3)2

49.

For each of the following pairs of ions, write the formula of the compound they will form:

(a) Ca2+, S2−

(b) NH4+,NH4+, SO42−SO42−

(c) Al3+, Br

(d) Na+, HPO42−HPO42−

(e) Mg2+, PO43−PO43−

50.

For each of the following pairs of ions, write the formula of the compound they will form:

(a) K+, O2−

(b) NH4+,NH4+, PO43−PO43−

(c) Al3+, O2−

(d) Na+, CO32−CO32−

(e) Ba2+, PO43−PO43−

2.7 Chemical Nomenclature

51.

Name the following compounds:

(a) CsCl

(b) BaO

(c) K2S

(d) BeCl2

(e) HBr

(f) AlF3

52.

Name the following compounds:

(a) NaF

(b) Rb2O

(c) BCl3

(d) H2Se

(e) P4O6

(f) ICl3

53.

Write the formulas of the following compounds:

(a) rubidium bromide

(b) magnesium selenide

(c) sodium oxide

(d) calcium chloride

(e) hydrogen fluoride

(f) gallium phosphide

(g) aluminum bromide

(h) ammonium sulfate

54.

Write the formulas of the following compounds:

(a) lithium carbonate

(b) sodium perchlorate

(c) barium hydroxide

(d) ammonium carbonate

(e) sulfuric acid

(f) calcium acetate

(g) magnesium phosphate

(h) sodium sulfite

55.

Write the formulas of the following compounds:

(a) chlorine dioxide

(b) dinitrogen tetraoxide

(c) potassium phosphide

(d) silver(I) sulfide

(e) aluminum fluoride trihydrate

(f) silicon dioxide

56.

Write the formulas of the following compounds:

(a) barium chloride

(b) magnesium nitride

(c) sulfur dioxide

(d) nitrogen trichloride

(e) dinitrogen trioxide

(f) tin(IV) chloride

57.

Each of the following compounds contains a metal that can exhibit more than one ionic charge. Name these compounds:

(a) Cr2O3

(b) FeCl2

(c) CrO3

(d) TiCl4

(e) CoCl2·6H2O

(f) MoS2

58.

Each of the following compounds contains a metal that can exhibit more than one ionic charge. Name these compounds:

(a) NiCO3

(b) MoO3

(c) Co(NO3)2

(d) V2O5

(e) MnO2

(f) Fe2O3

59.

The following ionic compounds are found in common household products. Write the formulas for each compound:

(a) potassium phosphate

(b) copper(II) sulfate

(c) calcium chloride

(d) titanium(IV) oxide

(e) ammonium nitrate

(f) sodium bisulfate (the common name for sodium hydrogen sulfate)

60.

The following ionic compounds are found in common household products. Name each of the compounds:

(a) Ca(H2PO4)2

(b) FeSO4

(c) CaCO3

(d) MgO

(e) NaNO2

(f) KI

61.

What are the IUPAC names of the following compounds?

(a) manganese dioxide

(b) mercurous chloride (Hg2Cl2)

(c) ferric nitrate [Fe(NO3)3]

(d) titanium tetrachloride

(e) cupric bromide (CuBr2)

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
Citation information

© Feb 14, 2019 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.