Skip to Content
OpenStax Logo
Calculus Volume 2

Key Concepts

Calculus Volume 2Key Concepts
Buy book
  1. Preface
  2. 1 Integration
    1. Introduction
    2. 1.1 Approximating Areas
    3. 1.2 The Definite Integral
    4. 1.3 The Fundamental Theorem of Calculus
    5. 1.4 Integration Formulas and the Net Change Theorem
    6. 1.5 Substitution
    7. 1.6 Integrals Involving Exponential and Logarithmic Functions
    8. 1.7 Integrals Resulting in Inverse Trigonometric Functions
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Chapter Review Exercises
  3. 2 Applications of Integration
    1. Introduction
    2. 2.1 Areas between Curves
    3. 2.2 Determining Volumes by Slicing
    4. 2.3 Volumes of Revolution: Cylindrical Shells
    5. 2.4 Arc Length of a Curve and Surface Area
    6. 2.5 Physical Applications
    7. 2.6 Moments and Centers of Mass
    8. 2.7 Integrals, Exponential Functions, and Logarithms
    9. 2.8 Exponential Growth and Decay
    10. 2.9 Calculus of the Hyperbolic Functions
    11. Key Terms
    12. Key Equations
    13. Key Concepts
    14. Chapter Review Exercises
  4. 3 Techniques of Integration
    1. Introduction
    2. 3.1 Integration by Parts
    3. 3.2 Trigonometric Integrals
    4. 3.3 Trigonometric Substitution
    5. 3.4 Partial Fractions
    6. 3.5 Other Strategies for Integration
    7. 3.6 Numerical Integration
    8. 3.7 Improper Integrals
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Chapter Review Exercises
  5. 4 Introduction to Differential Equations
    1. Introduction
    2. 4.1 Basics of Differential Equations
    3. 4.2 Direction Fields and Numerical Methods
    4. 4.3 Separable Equations
    5. 4.4 The Logistic Equation
    6. 4.5 First-order Linear Equations
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Chapter Review Exercises
  6. 5 Sequences and Series
    1. Introduction
    2. 5.1 Sequences
    3. 5.2 Infinite Series
    4. 5.3 The Divergence and Integral Tests
    5. 5.4 Comparison Tests
    6. 5.5 Alternating Series
    7. 5.6 Ratio and Root Tests
    8. Key Terms
    9. Key Equations
    10. Key Concepts
    11. Chapter Review Exercises
  7. 6 Power Series
    1. Introduction
    2. 6.1 Power Series and Functions
    3. 6.2 Properties of Power Series
    4. 6.3 Taylor and Maclaurin Series
    5. 6.4 Working with Taylor Series
    6. Key Terms
    7. Key Equations
    8. Key Concepts
    9. Chapter Review Exercises
  8. 7 Parametric Equations and Polar Coordinates
    1. Introduction
    2. 7.1 Parametric Equations
    3. 7.2 Calculus of Parametric Curves
    4. 7.3 Polar Coordinates
    5. 7.4 Area and Arc Length in Polar Coordinates
    6. 7.5 Conic Sections
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Chapter Review Exercises
  9. A | Table of Integrals
  10. B | Table of Derivatives
  11. C | Review of Pre-Calculus
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
  13. Index

1.1 Approximating Areas

  • The use of sigma (summation) notation of the form i=1naii=1nai is useful for expressing long sums of values in compact form.
  • For a continuous function defined over an interval [a,b],[a,b], the process of dividing the interval into n equal parts, extending a rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing the areas yields an approximation of the area of that region.
  • The width of each rectangle is Δx=ban.Δx=ban.
  • Riemann sums are expressions of the form i=1nf(xi*)Δx,i=1nf(xi*)Δx, and can be used to estimate the area under the curve y=f(x).y=f(x). Left- and right-endpoint approximations are special kinds of Riemann sums where the values of {xi*}{xi*} are chosen to be the left or right endpoints of the subintervals, respectively.
  • Riemann sums allow for much flexibility in choosing the set of points {xi*}{xi*} at which the function is evaluated, often with an eye to obtaining a lower sum or an upper sum.

1.2 The Definite Integral

  • The definite integral can be used to calculate net signed area, which is the area above the x-axis less the area below the x-axis. Net signed area can be positive, negative, or zero.
  • The component parts of the definite integral are the integrand, the variable of integration, and the limits of integration.
  • Continuous functions on a closed interval are integrable. Functions that are not continuous may still be integrable, depending on the nature of the discontinuities.
  • The properties of definite integrals can be used to evaluate integrals.
  • The area under the curve of many functions can be calculated using geometric formulas.
  • The average value of a function can be calculated using definite integrals.

1.3 The Fundamental Theorem of Calculus

  • The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value c such that f(c)f(c) equals the average value of the function. See The Mean Value Theorem for Integrals.
  • The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See Fundamental Theorem of Calculus, Part 1.
  • The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an antiderivative of its integrand. The total area under a curve can be found using this formula. See The Fundamental Theorem of Calculus, Part 2.

1.4 Integration Formulas and the Net Change Theorem

  • The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral of the rate of change. Net change can be a positive number, a negative number, or zero.
  • The area under an even function over a symmetric interval can be calculated by doubling the area over the positive x-axis. For an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

1.5 Substitution

  • Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative. The term ‘substitution’ refers to changing variables or substituting the variable u and du for appropriate expressions in the integrand.
  • When using substitution for a definite integral, we also have to change the limits of integration.

1.6 Integrals Involving Exponential and Logarithmic Functions

  • Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and decay.
  • Substitution is often used to evaluate integrals involving exponential functions or logarithms.

1.7 Integrals Resulting in Inverse Trigonometric Functions

  • Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and Logarithmic Functions lead directly to integration formulas involving inverse trigonometric functions.
  • Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up the correct format and make alterations as necessary to solve the problem.
  • Substitution is often required to put the integrand in the correct form.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction
Citation information

© Mar 30, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.