Skip to Content
OpenStax Logo
Calculus Volume 1

Introduction

Calculus Volume 1Introduction
Buy book
  1. Preface
  2. 1 Functions and Graphs
    1. Introduction
    2. 1.1 Review of Functions
    3. 1.2 Basic Classes of Functions
    4. 1.3 Trigonometric Functions
    5. 1.4 Inverse Functions
    6. 1.5 Exponential and Logarithmic Functions
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Chapter Review Exercises
  3. 2 Limits
    1. Introduction
    2. 2.1 A Preview of Calculus
    3. 2.2 The Limit of a Function
    4. 2.3 The Limit Laws
    5. 2.4 Continuity
    6. 2.5 The Precise Definition of a Limit
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Chapter Review Exercises
  4. 3 Derivatives
    1. Introduction
    2. 3.1 Defining the Derivative
    3. 3.2 The Derivative as a Function
    4. 3.3 Differentiation Rules
    5. 3.4 Derivatives as Rates of Change
    6. 3.5 Derivatives of Trigonometric Functions
    7. 3.6 The Chain Rule
    8. 3.7 Derivatives of Inverse Functions
    9. 3.8 Implicit Differentiation
    10. 3.9 Derivatives of Exponential and Logarithmic Functions
    11. Key Terms
    12. Key Equations
    13. Key Concepts
    14. Chapter Review Exercises
  5. 4 Applications of Derivatives
    1. Introduction
    2. 4.1 Related Rates
    3. 4.2 Linear Approximations and Differentials
    4. 4.3 Maxima and Minima
    5. 4.4 The Mean Value Theorem
    6. 4.5 Derivatives and the Shape of a Graph
    7. 4.6 Limits at Infinity and Asymptotes
    8. 4.7 Applied Optimization Problems
    9. 4.8 L’Hôpital’s Rule
    10. 4.9 Newton’s Method
    11. 4.10 Antiderivatives
    12. Key Terms
    13. Key Equations
    14. Key Concepts
    15. Chapter Review Exercises
  6. 5 Integration
    1. Introduction
    2. 5.1 Approximating Areas
    3. 5.2 The Definite Integral
    4. 5.3 The Fundamental Theorem of Calculus
    5. 5.4 Integration Formulas and the Net Change Theorem
    6. 5.5 Substitution
    7. 5.6 Integrals Involving Exponential and Logarithmic Functions
    8. 5.7 Integrals Resulting in Inverse Trigonometric Functions
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Chapter Review Exercises
  7. 6 Applications of Integration
    1. Introduction
    2. 6.1 Areas between Curves
    3. 6.2 Determining Volumes by Slicing
    4. 6.3 Volumes of Revolution: Cylindrical Shells
    5. 6.4 Arc Length of a Curve and Surface Area
    6. 6.5 Physical Applications
    7. 6.6 Moments and Centers of Mass
    8. 6.7 Integrals, Exponential Functions, and Logarithms
    9. 6.8 Exponential Growth and Decay
    10. 6.9 Calculus of the Hyperbolic Functions
    11. Key Terms
    12. Key Equations
    13. Key Concepts
    14. Chapter Review Exercises
  8. A | Table of Integrals
  9. B | Table of Derivatives
  10. C | Review of Pre-Calculus
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
  12. Index
Photo of an iceboat in action.
Figure 5.1 Iceboating is a popular winter sport in parts of the northern United States and Europe. (credit: modification of work by Carter Brown, Flickr)

Iceboats are a common sight on the lakes of Wisconsin and Minnesota on winter weekends. Iceboats are similar to sailboats, but they are fitted with runners, or “skates,” and are designed to run over the ice, rather than on water. Iceboats can move very quickly, and many ice boating enthusiasts are drawn to the sport because of the speed. Top iceboat racers can attain speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how far it travels. We revisit this question later in the chapter (see Example 5.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and integration. We then study some basic integration techniques and briefly examine some applications.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction
Citation information

© Mar 30, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.