Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology

4.4 The Endomembrane System and Proteins

Biology4.4 The Endomembrane System and Proteins

Menu
Table of contents
  1. Preface
  2. Unit 1. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  3. Unit 2. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 The Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reactions of Photosynthesis
      4. 8.3 Using Light Energy to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  4. Unit 3. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkage
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 16 Gene Expression
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcription Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  5. Unit 4. Evolutionary Processes
    1. 18 Evolution and the Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  6. Unit 5. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infections and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 23 Protists
      1. Introduction
      2. 23.1 Eukaryotic Origins
      3. 23.2 Characteristics of Protists
      4. 23.3 Groups of Protists
      5. 23.4 Ecology of Protists
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 24 Fungi
      1. Introduction
      2. 24.1 Characteristics of Fungi
      3. 24.2 Classifications of Fungi
      4. 24.3 Ecology of Fungi
      5. 24.4 Fungal Parasites and Pathogens
      6. 24.5 Importance of Fungi in Human Life
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 25 Seedless Plants
      1. Introduction
      2. 25.1 Early Plant Life
      3. 25.2 Green Algae: Precursors of Land Plants
      4. 25.3 Bryophytes
      5. 25.4 Seedless Vascular Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    6. 26 Seed Plants
      1. Introduction
      2. 26.1 Evolution of Seed Plants
      3. 26.2 Gymnosperms
      4. 26.3 Angiosperms
      5. 26.4 The Role of Seed Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 27 Introduction to Animal Diversity
      1. Introduction
      2. 27.1 Features of the Animal Kingdom
      3. 27.2 Features Used to Classify Animals
      4. 27.3 Animal Phylogeny
      5. 27.4 The Evolutionary History of the Animal Kingdom
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 28 Invertebrates
      1. Introduction
      2. 28.1 Phylum Porifera
      3. 28.2 Phylum Cnidaria
      4. 28.3 Superphylum Lophotrochozoa
      5. 28.4 Superphylum Ecdysozoa
      6. 28.5 Superphylum Deuterostomia
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    9. 29 Vertebrates
      1. Introduction
      2. 29.1 Chordates
      3. 29.2 Fishes
      4. 29.3 Amphibians
      5. 29.4 Reptiles
      6. 29.5 Birds
      7. 29.6 Mammals
      8. 29.7 The Evolution of Primates
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  7. Unit 6. Plant Structure and Function
    1. 30 Plant Form and Physiology
      1. Introduction
      2. 30.1 The Plant Body
      3. 30.2 Stems
      4. 30.3 Roots
      5. 30.4 Leaves
      6. 30.5 Transport of Water and Solutes in Plants
      7. 30.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 31 Soil and Plant Nutrition
      1. Introduction
      2. 31.1 Nutritional Requirements of Plants
      3. 31.2 The Soil
      4. 31.3 Nutritional Adaptations of Plants
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 32 Plant Reproduction
      1. Introduction
      2. 32.1 Reproductive Development and Structure
      3. 32.2 Pollination and Fertilization
      4. 32.3 Asexual Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. Unit 7. Animal Structure and Function
    1. 33 The Animal Body: Basic Form and Function
      1. Introduction
      2. 33.1 Animal Form and Function
      3. 33.2 Animal Primary Tissues
      4. 33.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 34 Animal Nutrition and the Digestive System
      1. Introduction
      2. 34.1 Digestive Systems
      3. 34.2 Nutrition and Energy Production
      4. 34.3 Digestive System Processes
      5. 34.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 35 The Nervous System
      1. Introduction
      2. 35.1 Neurons and Glial Cells
      3. 35.2 How Neurons Communicate
      4. 35.3 The Central Nervous System
      5. 35.4 The Peripheral Nervous System
      6. 35.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 36 Sensory Systems
      1. Introduction
      2. 36.1 Sensory Processes
      3. 36.2 Somatosensation
      4. 36.3 Taste and Smell
      5. 36.4 Hearing and Vestibular Sensation
      6. 36.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 37 The Endocrine System
      1. Introduction
      2. 37.1 Types of Hormones
      3. 37.2 How Hormones Work
      4. 37.3 Regulation of Body Processes
      5. 37.4 Regulation of Hormone Production
      6. 37.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 38 The Musculoskeletal System
      1. Introduction
      2. 38.1 Types of Skeletal Systems
      3. 38.2 Bone
      4. 38.3 Joints and Skeletal Movement
      5. 38.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 39 The Respiratory System
      1. Introduction
      2. 39.1 Systems of Gas Exchange
      3. 39.2 Gas Exchange across Respiratory Surfaces
      4. 39.3 Breathing
      5. 39.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 40 The Circulatory System
      1. Introduction
      2. 40.1 Overview of the Circulatory System
      3. 40.2 Components of the Blood
      4. 40.3 Mammalian Heart and Blood Vessels
      5. 40.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    9. 41 Osmotic Regulation and Excretion
      1. Introduction
      2. 41.1 Osmoregulation and Osmotic Balance
      3. 41.2 The Kidneys and Osmoregulatory Organs
      4. 41.3 Excretion Systems
      5. 41.4 Nitrogenous Wastes
      6. 41.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    10. 42 The Immune System
      1. Introduction
      2. 42.1 Innate Immune Response
      3. 42.2 Adaptive Immune Response
      4. 42.3 Antibodies
      5. 42.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    11. 43 Animal Reproduction and Development
      1. Introduction
      2. 43.1 Reproduction Methods
      3. 43.2 Fertilization
      4. 43.3 Human Reproductive Anatomy and Gametogenesis
      5. 43.4 Hormonal Control of Human Reproduction
      6. 43.5 Human Pregnancy and Birth
      7. 43.6 Fertilization and Early Embryonic Development
      8. 43.7 Organogenesis and Vertebrate Formation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  9. Unit 8. Ecology
    1. 44 Ecology and the Biosphere
      1. Introduction
      2. 44.1 The Scope of Ecology
      3. 44.2 Biogeography
      4. 44.3 Terrestrial Biomes
      5. 44.4 Aquatic Biomes
      6. 44.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 45 Population and Community Ecology
      1. Introduction
      2. 45.1 Population Demography
      3. 45.2 Life Histories and Natural Selection
      4. 45.3 Environmental Limits to Population Growth
      5. 45.4 Population Dynamics and Regulation
      6. 45.5 Human Population Growth
      7. 45.6 Community Ecology
      8. 45.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 46 Ecosystems
      1. Introduction
      2. 46.1 Ecology of Ecosystems
      3. 46.2 Energy Flow through Ecosystems
      4. 46.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 47 Conservation Biology and Biodiversity
      1. Introduction
      2. 47.1 The Biodiversity Crisis
      3. 47.2 The Importance of Biodiversity to Human Life
      4. 47.3 Threats to Biodiversity
      5. 47.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index

Learning Objectives

By the end of this section, you will be able to:
  • List the components of the endomembrane system
  • Recognize the relationship between the endomembrane system and its functions

The endomembrane system (endo = “within”) is a group of membranes and organelles (Figure 4.18) in eukaryotic cells that works together to modify, package, and transport lipids and proteins. It includes the nuclear envelope, lysosomes, and vesicles, which we’ve already mentioned, and the endoplasmic reticulum and Golgi apparatus, which we will cover shortly. Although not technically within the cell, the plasma membrane is included in the endomembrane system because, as you will see, it interacts with the other endomembranous organelles. The endomembrane system does not include the membranes of either mitochondria or chloroplasts.

Art Connection
The left part of this figure shows the rough ER with an integral membrane protein embedded in it. The part of the protein facing the inside of the ER has a carbohydrate attached to it. The protein is shown leaving the ER in a vesicle that fuses with the cis side of the Golgi apparatus. The Golgi apparatus consists of several layers of membranes, called cisternae. As the protein passes through the cisternae, it is further modified by the addition of more carbohydrates. Eventually, it leaves the trans face of the Golgi in a vesicle. The vesicle fuses with the cell membrane so that the carbohydrate that was on the inside of the vesicle now faces the outside of the membrane. At the same time, the contents of the vesicle are ejected from the cell.
Figure 4.18 "Membrane and secretory proteins are synthesized in the rough endoplasmic reticulum (RER). The RER also sometimes modifies proteins. In this illustration, a (green) integral membrane protein in the ER is modified by attachment of a (purple) carbohydrate. Vesicles with the integral protein bud from the ER and fuse with the cis face of the Golgi apparatus. As the protein passes along the Golgi’s cisternae, it is further modified by the addition of more carbohydrates. After its synthesis is complete, it exits as integral membrane protein of the vesicle that bud from the Golgi’s trans face and when the vesicle fuses with the cell membrane the protein becomes integral portion of that cell membrane. (credit: modification of work by Magnus Manske)

If a peripheral membrane protein were synthesized in the lumen (inside) of the ER, would it end up on the inside or outside of the plasma membrane?

The Endoplasmic Reticulum

The endoplasmic reticulum (ER) (Figure 4.18) is a series of interconnected membranous sacs and tubules that collectively modifies proteins and synthesizes lipids. However, these two functions are performed in separate areas of the ER: the rough ER and the smooth ER, respectively.

The hollow portion of the ER tubules is called the lumen or cisternal space. The membrane of the ER, which is a phospholipid bilayer embedded with proteins, is continuous with the nuclear envelope.

Rough ER

The rough endoplasmic reticulum (RER) is so named because the ribosomes attached to its cytoplasmic surface give it a studded appearance when viewed through an electron microscope (Figure 4.19).

In this transmission electron micrograph, the nucleus is the most prominent feature. The nucleolus is a circular, dark region inside the nucleus. A nuclear pore can be seen in the nuclear envelope that surrounds the nucleus. The rough endoplasmic reticulum surrounds the nucleus, appearing as many layers of membranes. A mitochondrion sits between the layers of the ER membrane.
Figure 4.19 This transmission electron micrograph shows the rough endoplasmic reticulum and other organelles in a pancreatic cell. (credit: modification of work by Louisa Howard)

Ribosomes transfer their newly synthesized proteins into the lumen of the RER where they undergo structural modifications, such as folding or the acquisition of side chains. These modified proteins will be incorporated into cellular membranes—the membrane of the ER or those of other organelles—or secreted from the cell (such as protein hormones, enzymes). The RER also makes phospholipids for cellular membranes.

If the phospholipids or modified proteins are not destined to stay in the RER, they will reach their destinations via transport vesicles that bud from the RER’s membrane (Figure 4.18).

Since the RER is engaged in modifying proteins (such as enzymes, for example) that will be secreted from the cell, you would be correct in assuming that the RER is abundant in cells that secrete proteins. This is the case with cells of the liver, for example.

Smooth ER

The smooth endoplasmic reticulum (SER) is continuous with the RER but has few or no ribosomes on its cytoplasmic surface (Figure 4.18). Functions of the SER include synthesis of carbohydrates, lipids, and steroid hormones; detoxification of medications and poisons; and storage of calcium ions.

In muscle cells, a specialized SER called the sarcoplasmic reticulum is responsible for storage of the calcium ions that are needed to trigger the coordinated contractions of the muscle cells.

Link to Learning

Link to Learning

QR Code representing a URL

You can watch an excellent animation of the endomembrane system here. At the end of the animation, there is a short self-assessment.

Career Connection

Career Connection

CardiologistHeart disease is the leading cause of death in the United States. This is primarily due to our sedentary lifestyle and our high trans-fat diets.

Heart failure is just one of many disabling heart conditions. Heart failure does not mean that the heart has stopped working. Rather, it means that the heart can’t pump with sufficient force to transport oxygenated blood to all the vital organs. Left untreated, heart failure can lead to kidney failure and failure of other organs.

The wall of the heart is composed of cardiac muscle tissue. Heart failure occurs when the endoplasmic reticula of cardiac muscle cells do not function properly. As a result, an insufficient number of calcium ions are available to trigger a sufficient contractile force.

Cardiologists (cardi- = “heart”; -ologist = “one who studies”) are doctors who specialize in treating heart diseases, including heart failure. Cardiologists can make a diagnosis of heart failure via physical examination, results from an electrocardiogram (ECG, a test that measures the electrical activity of the heart), a chest X-ray to see whether the heart is enlarged, and other tests. If heart failure is diagnosed, the cardiologist will typically prescribe appropriate medications and recommend a reduction in table salt intake and a supervised exercise program.

The Golgi Apparatus

We have already mentioned that vesicles can bud from the ER and transport their contents elsewhere, but where do the vesicles go? Before reaching their final destination, the lipids or proteins within the transport vesicles still need to be sorted, packaged, and tagged so that they wind up in the right place. Sorting, tagging, packaging, and distribution of lipids and proteins takes place in the Golgi apparatus (also called the Golgi body), a series of flattened membranes (Figure 4.20).

In this transmission electron micrograph, the Golgi apparatus appears as a stack of membranes surrounded by unnamed organelles.
Figure 4.20 The Golgi apparatus in this white blood cell is visible as a stack of semicircular, flattened rings in the lower portion of the image. Several vesicles can be seen near the Golgi apparatus. (credit: modification of work by Louisa Howard)

The receiving side of the Golgi apparatus is called the cis face. The opposite side is called the trans face. The transport vesicles that formed from the ER travel to the cis face, fuse with it, and empty their contents into the lumen of the Golgi apparatus. As the proteins and lipids travel through the Golgi, they undergo further modifications that allow them to be sorted. The most frequent modification is the addition of short chains of sugar molecules. These newly modified proteins and lipids are then tagged with phosphate groups or other small molecules so that they can be routed to their proper destinations.

Finally, the modified and tagged proteins are packaged into secretory vesicles that bud from the trans face of the Golgi. While some of these vesicles deposit their contents into other parts of the cell where they will be used, other secretory vesicles fuse with the plasma membrane and release their contents outside the cell.

In another example of form following function, cells that engage in a great deal of secretory activity (such as cells of the salivary glands that secrete digestive enzymes or cells of the immune system that secrete antibodies) have an abundance of Golgi.

In plant cells, the Golgi apparatus has the additional role of synthesizing polysaccharides, some of which are incorporated into the cell wall and some of which are used in other parts of the cell.

Career Connection

Career Connection

GeneticistMany diseases arise from genetic mutations that prevent the synthesis of critical proteins. One such disease is Lowe disease (also called oculocerebrorenal syndrome, because it affects the eyes, brain, and kidneys). In Lowe disease, there is a deficiency in an enzyme localized to the Golgi apparatus. Children with Lowe disease are born with cataracts, typically develop kidney disease after the first year of life, and may have impaired mental abilities.

Lowe disease is a genetic disease caused by a mutation on the X chromosome. The X chromosome is one of the two human sex chromosome, as these chromosomes determine a person's sex. Females possess two X chromosomes while males possess one X and one Y chromosome. In females, the genes on only one of the two X chromosomes are expressed. Therefore, females who carry the Lowe disease gene on one of their X chromosomes have a 50/50 chance of having the disease. However, males only have one X chromosome and the genes on this chromosome are always expressed. Therefore, males will always have Lowe disease if their X chromosome carries the Lowe disease gene. The location of the mutated gene, as well as the locations of many other mutations that cause genetic diseases, has now been identified. Through prenatal testing, a woman can find out if the fetus she is carrying may be afflicted with one of several genetic diseases.

Geneticists analyze the results of prenatal genetic tests and may counsel pregnant women on available options. They may also conduct genetic research that leads to new drugs or foods, or perform DNA analyses that are used in forensic investigations.

Lysosomes

In addition to their role as the digestive component and organelle-recycling facility of animal cells, lysosomes are considered to be parts of the endomembrane system. Lysosomes also use their hydrolytic enzymes to destroy pathogens (disease-causing organisms) that might enter the cell. A good example of this occurs in a group of white blood cells called macrophages, which are part of your body’s immune system. In a process known as phagocytosis or endocytosis, a section of the plasma membrane of the macrophage invaginates (folds in) and engulfs a pathogen. The invaginated section, with the pathogen inside, then pinches itself off from the plasma membrane and becomes a vesicle. The vesicle fuses with a lysosome. The lysosome’s hydrolytic enzymes then destroy the pathogen (Figure 4.21).

In this illustration, a eukaryotic cell is shown consuming a bacterium. As the bacterium is consumed, it is encapsulated in a vesicle. The vesicle fuses with a lysosome, and proteins inside the lysosome digest the bacterium.
Figure 4.21 A macrophage has engulfed (phagocytized) a potentially pathogenic bacterium and then fuses with a lysosomes within the cell to destroy the pathogen. Other organelles are present in the cell but for simplicity are not shown.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
Citation information

© Feb 14, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.