Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology

26.4 The Role of Seed Plants

Biology26.4 The Role of Seed Plants

Menu
Table of contents
  1. Preface
  2. Unit 1. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  3. Unit 2. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 The Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reactions of Photosynthesis
      4. 8.3 Using Light Energy to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  4. Unit 3. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkage
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 16 Gene Expression
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcription Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  5. Unit 4. Evolutionary Processes
    1. 18 Evolution and the Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  6. Unit 5. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infections and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 23 Protists
      1. Introduction
      2. 23.1 Eukaryotic Origins
      3. 23.2 Characteristics of Protists
      4. 23.3 Groups of Protists
      5. 23.4 Ecology of Protists
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 24 Fungi
      1. Introduction
      2. 24.1 Characteristics of Fungi
      3. 24.2 Classifications of Fungi
      4. 24.3 Ecology of Fungi
      5. 24.4 Fungal Parasites and Pathogens
      6. 24.5 Importance of Fungi in Human Life
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 25 Seedless Plants
      1. Introduction
      2. 25.1 Early Plant Life
      3. 25.2 Green Algae: Precursors of Land Plants
      4. 25.3 Bryophytes
      5. 25.4 Seedless Vascular Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    6. 26 Seed Plants
      1. Introduction
      2. 26.1 Evolution of Seed Plants
      3. 26.2 Gymnosperms
      4. 26.3 Angiosperms
      5. 26.4 The Role of Seed Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 27 Introduction to Animal Diversity
      1. Introduction
      2. 27.1 Features of the Animal Kingdom
      3. 27.2 Features Used to Classify Animals
      4. 27.3 Animal Phylogeny
      5. 27.4 The Evolutionary History of the Animal Kingdom
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 28 Invertebrates
      1. Introduction
      2. 28.1 Phylum Porifera
      3. 28.2 Phylum Cnidaria
      4. 28.3 Superphylum Lophotrochozoa
      5. 28.4 Superphylum Ecdysozoa
      6. 28.5 Superphylum Deuterostomia
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    9. 29 Vertebrates
      1. Introduction
      2. 29.1 Chordates
      3. 29.2 Fishes
      4. 29.3 Amphibians
      5. 29.4 Reptiles
      6. 29.5 Birds
      7. 29.6 Mammals
      8. 29.7 The Evolution of Primates
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  7. Unit 6. Plant Structure and Function
    1. 30 Plant Form and Physiology
      1. Introduction
      2. 30.1 The Plant Body
      3. 30.2 Stems
      4. 30.3 Roots
      5. 30.4 Leaves
      6. 30.5 Transport of Water and Solutes in Plants
      7. 30.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 31 Soil and Plant Nutrition
      1. Introduction
      2. 31.1 Nutritional Requirements of Plants
      3. 31.2 The Soil
      4. 31.3 Nutritional Adaptations of Plants
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 32 Plant Reproduction
      1. Introduction
      2. 32.1 Reproductive Development and Structure
      3. 32.2 Pollination and Fertilization
      4. 32.3 Asexual Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. Unit 7. Animal Structure and Function
    1. 33 The Animal Body: Basic Form and Function
      1. Introduction
      2. 33.1 Animal Form and Function
      3. 33.2 Animal Primary Tissues
      4. 33.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 34 Animal Nutrition and the Digestive System
      1. Introduction
      2. 34.1 Digestive Systems
      3. 34.2 Nutrition and Energy Production
      4. 34.3 Digestive System Processes
      5. 34.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 35 The Nervous System
      1. Introduction
      2. 35.1 Neurons and Glial Cells
      3. 35.2 How Neurons Communicate
      4. 35.3 The Central Nervous System
      5. 35.4 The Peripheral Nervous System
      6. 35.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 36 Sensory Systems
      1. Introduction
      2. 36.1 Sensory Processes
      3. 36.2 Somatosensation
      4. 36.3 Taste and Smell
      5. 36.4 Hearing and Vestibular Sensation
      6. 36.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 37 The Endocrine System
      1. Introduction
      2. 37.1 Types of Hormones
      3. 37.2 How Hormones Work
      4. 37.3 Regulation of Body Processes
      5. 37.4 Regulation of Hormone Production
      6. 37.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 38 The Musculoskeletal System
      1. Introduction
      2. 38.1 Types of Skeletal Systems
      3. 38.2 Bone
      4. 38.3 Joints and Skeletal Movement
      5. 38.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 39 The Respiratory System
      1. Introduction
      2. 39.1 Systems of Gas Exchange
      3. 39.2 Gas Exchange across Respiratory Surfaces
      4. 39.3 Breathing
      5. 39.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 40 The Circulatory System
      1. Introduction
      2. 40.1 Overview of the Circulatory System
      3. 40.2 Components of the Blood
      4. 40.3 Mammalian Heart and Blood Vessels
      5. 40.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    9. 41 Osmotic Regulation and Excretion
      1. Introduction
      2. 41.1 Osmoregulation and Osmotic Balance
      3. 41.2 The Kidneys and Osmoregulatory Organs
      4. 41.3 Excretion Systems
      5. 41.4 Nitrogenous Wastes
      6. 41.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    10. 42 The Immune System
      1. Introduction
      2. 42.1 Innate Immune Response
      3. 42.2 Adaptive Immune Response
      4. 42.3 Antibodies
      5. 42.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    11. 43 Animal Reproduction and Development
      1. Introduction
      2. 43.1 Reproduction Methods
      3. 43.2 Fertilization
      4. 43.3 Human Reproductive Anatomy and Gametogenesis
      5. 43.4 Hormonal Control of Human Reproduction
      6. 43.5 Human Pregnancy and Birth
      7. 43.6 Fertilization and Early Embryonic Development
      8. 43.7 Organogenesis and Vertebrate Formation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  9. Unit 8. Ecology
    1. 44 Ecology and the Biosphere
      1. Introduction
      2. 44.1 The Scope of Ecology
      3. 44.2 Biogeography
      4. 44.3 Terrestrial Biomes
      5. 44.4 Aquatic Biomes
      6. 44.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 45 Population and Community Ecology
      1. Introduction
      2. 45.1 Population Demography
      3. 45.2 Life Histories and Natural Selection
      4. 45.3 Environmental Limits to Population Growth
      5. 45.4 Population Dynamics and Regulation
      6. 45.5 Human Population Growth
      7. 45.6 Community Ecology
      8. 45.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 46 Ecosystems
      1. Introduction
      2. 46.1 Ecology of Ecosystems
      3. 46.2 Energy Flow through Ecosystems
      4. 46.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 47 Conservation Biology and Biodiversity
      1. Introduction
      2. 47.1 The Biodiversity Crisis
      3. 47.2 The Importance of Biodiversity to Human Life
      4. 47.3 Threats to Biodiversity
      5. 47.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index

Learning Objectives

By the end of this section, you will be able to:
  • Explain how angiosperm diversity is due, in part, to multiple interactions with animals
  • Describe ways in which pollination occurs
  • Discuss the roles that plants play in ecosystems and how deforestation threatens plant biodiversity

Without seed plants, life as we know it would not be possible. Plants play a key role in the maintenance of terrestrial ecosystems through stabilization of soils, cycling of carbon, and climate moderation. Large tropical forests release oxygen and act as carbon dioxide sinks. Seed plants provide shelter to many life forms, as well as food for herbivores, thereby indirectly feeding carnivores. Plant secondary metabolites are used for medicinal purposes and industrial production.

Animals and Plants: Herbivory

Coevolution of flowering plants and insects is a hypothesis that has received much attention and support, especially because both angiosperms and insects diversified at about the same time in the middle Mesozoic. Many authors have attributed the diversity of plants and insects to pollination and herbivory, or consumption of plants by insects and other animals. This is believed to have been as much a driving force as pollination. Coevolution of herbivores and plant defenses is observed in nature. Unlike animals, most plants cannot outrun predators or use mimicry to hide from hungry animals. A sort of arms race exists between plants and herbivores. To “combat” herbivores, some plant seeds—such as acorn and unripened persimmon—are high in alkaloids and therefore unsavory to some animals. Other plants are protected by bark, although some animals developed specialized mouth pieces to tear and chew vegetal material. Spines and thorns (Figure 26.18) deter most animals, except for mammals with thick fur, and some birds have specialized beaks to get past such defenses.

 Photo A shows a green cactus. It is covered in clusters of long, slender spines that are pale white and have visible sharp points. Photo B shows a green fuzzy stem with several short green thorns protruding from it.
Figure 26.18 (a) Spines and (b) thorns are examples of plant defenses. (credit a: modification of work by Jon Sullivan; credit b: modification of work by I. Sáček, Sr.)

Herbivory has been used by seed plants for their own benefit in a display of mutualistic relationships. The dispersal of fruit by animals is the most striking example. The plant offers to the herbivore a nutritious source of food in return for spreading the plant’s genetic material to a wider area.

An extreme example of collaboration between an animal and a plant is the case of acacia trees and ants. The trees support the insects with shelter and food. In return, ants discourage herbivores, both invertebrates and vertebrates, by stinging and attacking leaf-eating insects.

Animals and Plants: Pollination

Grasses are a successful group of flowering plants that are wind pollinated. They produce large amounts of powdery pollen carried over large distances by the wind. The flowers are small and wisp-like. Large trees such as oaks, maples, and birches are also wind pollinated.

Link to Learning

Link to Learning

QR Code representing a URL

Explore this website for additional information on pollinators.

More than 80 percent of angiosperms depend on animals for pollination: the transfer of pollen from the anther to the stigma. Consequently, plants have developed many adaptations to attract pollinators. The specificity of specialized plant structures that target animals can be very surprising. It is possible, for example, to determine the type of pollinator favored by a plant just from the flower’s characteristics. Many bird or insect-pollinated flowers secrete nectar, which is a sugary liquid. They also produce both fertile pollen, for reproduction, and sterile pollen rich in nutrients for birds and insects. Butterflies and bees can detect ultraviolet light. Flowers that attract these pollinators usually display a pattern of low ultraviolet reflectance that helps them quickly locate the flower's center and collect nectar while being dusted with pollen (Figure 26.19). Large, red flowers with little smell and a long funnel shape are preferred by hummingbirds, who have good color perception, a poor sense of smell, and need a strong perch. White flowers opened at night attract moths. Other animals—such as bats, lemurs, and lizards—can also act as pollinating agents. Any disruption to these interactions, such as the disappearance of bees as a consequence of colony collapse disorders, can lead to disaster for agricultural industries that depend heavily on pollinated crops.

 Photo shows a fat, yellow and black bumblebee drinking nectar from a purple and yellow flower.
Figure 26.19 As a bee collects nectar from a flower, it is dusted by pollen, which it then disperses to other flowers. (credit: John Severns)

Scientific Method Connection

Scientific Method Connection

Testing Attraction of Flies by Rotting Flesh SmellQuestion: Will flowers that offer cues to bees attract carrion flies if sprayed with compounds that smell like rotten flesh?

Background: Visitation of flowers by pollinating flies is a function mostly of smell. Flies are attracted by rotting flesh and carrions. The putrid odor seems to be the major attractant. The polyamines putrescine and cadaverine, which are the products of protein breakdown after animal death, are the source of the pungent smell of decaying meat. Some plants strategically attract flies by synthesizing polyamines similar to those generated by decaying flesh and thereby attract carrion flies.

Flies seek out dead animals because they normally lay their eggs on them and their maggots feed on the decaying flesh. Interestingly, time of death can be determined by a forensic entomologist based on the stages and type of maggots recovered from cadavers.

Hypothesis: Because flies are drawn to other organisms based on smell and not sight, a flower that is normally attractive to bees because of its colors will attract flies if it is sprayed with polyamines similar to those generated by decaying flesh.

Test the hypothesis:

  1. Select flowers usually pollinated by bees. White petunia may be good choice.
  2. Divide the flowers into two groups, and while wearing eye protection and gloves, spray one group with a solution of either putrescine or cadaverine. (Putrescine dihydrochloride is typically available in 98 percent concentration; this can be diluted to approximately 50 percent for this experiment.)
  3. Place the flowers in a location where flies are present, keeping the sprayed and unsprayed flowers separated.
  4. Observe the movement of the flies for one hour. Record the number of visits to the flowers using a table similar to Table 26.2. Given the rapid movement of flies, it may be beneficial to use a video camera to record the fly–flower interaction. Replay the video in slow motion to obtain an accurate record of the number of fly visits to the flowers.
  5. Repeat the experiment four more times with the same species of flower, but using different specimens.
  6. Repeat the entire experiment with a different type of flower that is normally pollinated by bees.
Results of Number of Visits by Flies to Sprayed and Control/Unsprayed Flowers
Trial # Sprayed Flowers Unsprayed Flowers
1
2
3
4
5
Table 26.2

Analyze your data: Review the data you have recorded. Average the number of visits that flies made to sprayed flowers over the course of the five trials (on the first flower type) and compare and contrast them to the average number of visits that flies made to the unsprayed/control flowers. Can you draw any conclusions regarding the attraction of the flies to the sprayed flowers?

For the second flower type used, average the number of visits that flies made to sprayed flowers over the course of the five trials and compare and contrast them to the average number of visits that flies made to the unsprayed/control flowers. Can you draw any conclusions regarding the attraction of the flies to the sprayed flowers?

Compare and contrast the average number of visits that flies made to the two flower types. Can you draw any conclusions about whether the appearance of the flower had any impact on the attraction of flies? Did smell override any appearance differences, or were the flies attracted to one flower type more than another?

Form a conclusion: Do the results support the hypothesis? If not, how can this be explained?

The Importance of Seed Plants in Human Life

Seed plants are the foundation of human diets across the world (Figure 26.20). Many societies eat almost exclusively vegetarian fare and depend solely on seed plants for their nutritional needs. A few crops (rice, wheat, and potatoes) dominate the agricultural landscape. Many crops were developed during the agricultural revolution, when human societies made the transition from nomadic hunter–gatherers to horticulture and agriculture. Cereals, rich in carbohydrates, provide the staple of many human diets. Beans and nuts supply proteins. Fats are derived from crushed seeds, as is the case for peanut and rapeseed (canola) oils, or fruits such as olives. Animal husbandry also consumes large amounts of crops.

Staple crops are not the only food derived from seed plants. Fruits and vegetables provide nutrients, vitamins, and fiber. Sugar, to sweeten dishes, is produced from the monocot sugarcane and the eudicot sugar beet. Drinks are made from infusions of tea leaves, chamomile flowers, crushed coffee beans, or powdered cocoa beans. Spices come from many different plant parts: saffron and cloves are stamens and buds, black pepper and vanilla are seeds, the bark of a bush in the Laurales family supplies cinnamon, and the herbs that flavor many dishes come from dried leaves and fruit, such as the pungent red chili pepper. The volatile oils of flowers and bark provide the scent of perfumes. Additionally, no discussion of seed plant contribution to human diet would be complete without the mention of alcohol. Fermentation of plant-derived sugars and starches is used to produce alcoholic beverages in all societies. In some cases, the beverages are derived from the fermentation of sugars from fruit, as with wines and, in other cases, from the fermentation of carbohydrates derived from seeds, as with beers.

Seed plants have many other uses, including providing wood as a source of timber for construction, fuel, and material to build furniture. Most paper is derived from the pulp of coniferous trees. Fibers of seed plants such as cotton, flax, and hemp are woven into cloth. Textile dyes, such as indigo, were mostly of plant origin until the advent of synthetic chemical dyes.

Lastly, it is more difficult to quantify the benefits of ornamental seed plants. These grace private and public spaces, adding beauty and serenity to human lives and inspiring painters and poets alike.

 Photo A shows small, almond-shaped cacao seeds and the oval cacao fruit. Illustration B shows the teardrop-shaped leaves and small pink flowers of a cinchona tree. Photo C shows a violin. Photo D shows a bouquet of purple and yellow tulips.
Figure 26.20 Humans rely on plants for a variety of reasons. (a) Cacao beans were introduced in Europe from the New World, where they were used by Mesoamerican civilizations. Combined with sugar, another plant product, chocolate is a popular food. (b) Flowers like the tulip are cultivated for their beauty. (c) Quinine, extracted from cinchona trees, is used to treat malaria, to reduce fever, and to alleviate pain. (d) This violin is made of wood. (credit a: modification of work by "Everjean"/Flickr; credit b: modification of work by Rosendahl; credit c: modification of work by Franz Eugen Köhler)

The medicinal properties of plants have been known to human societies since ancient times. There are references to the use of plants’ curative properties in Egyptian, Babylonian, and Chinese writings from 5,000 years ago. Many modern synthetic therapeutic drugs are derived or synthesized de novo from plant secondary metabolites. It is important to note that the same plant extract can be a therapeutic remedy at low concentrations, become an addictive drug at higher doses, and can potentially kill at high concentrations. Table 26.3 presents a few drugs, their plants of origin, and their medicinal applications.

Plant Origin of Medicinal Compounds and Medical Applications
Plant Compound Application
Deadly nightshade (Atropa belladonna ) Atropine Dilate eye pupils for eye exams
Foxglove (Digitalis purpurea) Digitalis Heart disease, stimulates heart beat
Yam (Dioscorea spp.) Steroids Steroid hormones: contraceptive pill and cortisone
Ephedra (Ephedra spp.) Ephedrine Decongestant and bronchiole dilator
Pacific yew (Taxus brevifolia) Taxol Cancer chemotherapy; inhibits mitosis
Opium poppy (Papaver somniferum) Opioids Analgesic (reduces pain without loss of consciousness) and narcotic (reduces pain with drowsiness and loss of consciousness) in higher doses
Quinine tree (Cinchona spp.) Quinine Antipyretic (lowers body temperature) and antimalarial
Willow (Salix spp.) Salicylic acid (aspirin) Analgesic and antipyretic
Table 26.3

Career Connection

Career Connection

EthnobotanistThe relatively new field of ethnobotany studies the interaction between a particular culture and the plants native to the region. Seed plants have a large influence on day-to-day human life. Not only are plants the major source of food and medicine, they also influence many other aspects of society, from clothing to industry. The medicinal properties of plants were recognized early on in human cultures. From the mid-1900s, synthetic chemicals began to supplant plant-based remedies.

Pharmacognosy is the branch of pharmacology that focuses on medicines derived from natural sources. With massive globalization and industrialization, there is a concern that much human knowledge of plants and their medicinal purposes will disappear with the cultures that fostered them. This is where ethnobotanists come in. To learn about and understand the use of plants in a particular culture, an ethnobotanist must bring in knowledge of plant life and an understanding and appreciation of diverse cultures and traditions. The Amazon forest is home to an incredible diversity of vegetation and is considered an untapped resource of medicinal plants; yet, both the ecosystem and its indigenous cultures are threatened with extinction.

To become an ethnobotanist, a person must acquire a broad knowledge of plant biology, ecology and sociology. Not only are the plant specimens studied and collected, but also the stories, recipes, and traditions that are linked to them. For ethnobotanists, plants are not viewed solely as biological organisms to be studied in a laboratory, but as an integral part of human culture. The convergence of molecular biology, anthropology, and ecology make the field of ethnobotany a truly multidisciplinary science.

Biodiversity of Plants

Biodiversity ensures a resource for new food crops and medicines. Plant life balances ecosystems, protects watersheds, mitigates erosion, moderates climate and provides shelter for many animal species. Threats to plant diversity, however, come from many angles. The explosion of the human population, especially in tropical countries where birth rates are highest and economic development is in full swing, is leading to human encroachment into forested areas. To feed the larger population, humans need to obtain arable land, so there is massive clearing of trees. The need for more energy to power larger cities and economic growth therein leads to the construction of dams, the consequent flooding of ecosystems, and increased emissions of pollutants. Other threats to tropical forests come from poachers, who log trees for their precious wood. Ebony and Brazilian rosewood, both on the endangered list, are examples of tree species driven almost to extinction by indiscriminate logging.

The number of plant species becoming extinct is increasing at an alarming rate. Because ecosystems are in a delicate balance, and seed plants maintain close symbiotic relationships with animals—whether predators or pollinators—the disappearance of a single plant can lead to the extinction of connected animal species. A real and pressing issue is that many plant species have not yet been catalogued, and so their place in the ecosystem is unknown. These unknown species are threatened by logging, habitat destruction, and loss of pollinators. They may become extinct before we have the chance to begin to understand the possible impacts from their disappearance. Efforts to preserve biodiversity take several lines of action, from preserving heirloom seeds to barcoding species. Heirloom seeds come from plants that were traditionally grown in human populations, as opposed to the seeds used for large-scale agricultural production. Barcoding is a technique in which one or more short gene sequences, taken from a well-characterized portion of the genome, are used to identify a species through DNA analysis.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
Citation information

© Feb 14, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.