Skip to Content
OpenStax Logo
Biology for AP® Courses

Test Prep for AP® Courses

Biology for AP® CoursesTest Prep for AP® Courses
Buy book
  1. Preface
  2. Unit 1
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  3. Unit 2
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reaction of Photosynthesis
      4. 8.3 Using Light to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  4. Unit 3
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkages
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 16 Gene Regulation
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcriptional Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  5. Unit 4
    1. 18 Evolution and Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
  6. Unit 5
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infection and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  7. Unit 6
    1. 23 Plant Form and Physiology
      1. Introduction
      2. 23.1 The Plant Body
      3. 23.2 Stems
      4. 23.3 Roots
      5. 23.4 Leaves
      6. 23.5 Transport of Water and Solutes in Plants
      7. 23.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
  8. Unit 7
    1. 24 The Animal Body: Basic Form and Function
      1. Introduction
      2. 24.1 Animal Form and Function
      3. 24.2 Animal Primary Tissues
      4. 24.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
    2. 25 Animal Nutrition and the Digestive System
      1. Introduction
      2. 25.1 Digestive Systems
      3. 25.2 Nutrition and Energy Production
      4. 25.3 Digestive System Processes
      5. 25.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 26 The Nervous System
      1. Introduction
      2. 26.1 Neurons and Glial Cells
      3. 26.2 How Neurons Communicate
      4. 26.3 The Central Nervous System
      5. 26.4 The Peripheral Nervous System
      6. 26.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 27 Sensory Systems
      1. Introduction
      2. 27.1 Sensory Processes
      3. 27.2 Somatosensation
      4. 27.3 Taste and Smell
      5. 27.4 Hearing and Vestibular Sensation
      6. 27.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Science Practice Challenge Questions
    5. 28 The Endocrine System
      1. Introduction
      2. 28.1 Types of Hormones
      3. 28.2 How Hormones Work
      4. 28.3 Regulation of Body Processes
      5. 28.4 Regulation of Hormone Production
      6. 28.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 29 The Musculoskeletal System
      1. Introduction
      2. 29.1 Types of Skeletal Systems
      3. 29.2 Bone
      4. 29.3 Joints and Skeletal Movement
      5. 29.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Science Practice Challenge Questions
    7. 30 The Respiratory System
      1. Introduction
      2. 30.1 Systems of Gas Exchange
      3. 30.2 Gas Exchange across Respiratory Surfaces
      4. 30.3 Breathing
      5. 30.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    8. 31 The Circulatory System
      1. Introduction
      2. 31.1 Overview of the Circulatory System
      3. 31.2 Components of the Blood
      4. 31.3 Mammalian Heart and Blood Vessels
      5. 31.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    9. 32 Osmotic Regulation and Excretion
      1. Introduction
      2. 32.1 Osmoregulation and Osmotic Balance
      3. 32.2 The Kidneys and Osmoregulatory Organs
      4. 32.3 Excretion Systems
      5. 32.4 Nitrogenous Wastes
      6. 32.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
    10. 33 The Immune System
      1. Introduction
      2. 33.1 Innate Immune Response
      3. 33.2 Adaptive Immune Response
      4. 33.3 Antibodies
      5. 33.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    11. 34 Animal Reproduction and Development
      1. Introduction
      2. 34.1 Reproduction Methods
      3. 34.2 Fertilization
      4. 34.3 Human Reproductive Anatomy and Gametogenesis
      5. 34.4 Hormonal Control of Human Reproduction
      6. 34.5 Fertilization and Early Embryonic Development
      7. 34.6 Organogenesis and Vertebrate Formation
      8. 34.7 Human Pregnancy and Birth
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
  9. Unit 8
    1. 35 Ecology and the Biosphere
      1. Introduction
      2. 35.1 The Scope of Ecology
      3. 35.2 Biogeography
      4. 35.3 Terrestrial Biomes
      5. 35.4 Aquatic Biomes
      6. 35.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    2. 36 Population and Community Ecology
      1. Introduction
      2. 36.1 Population Demography
      3. 36.2 Life Histories and Natural Selection
      4. 36.3 Environmental Limits to Population Growth
      5. 36.4 Population Dynamics and Regulation
      6. 36.5 Human Population Growth
      7. 36.6 Community Ecology
      8. 36.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    3. 37 Ecosystems
      1. Introduction
      2. 37.1 Ecology for Ecosystems
      3. 37.2 Energy Flow through Ecosystems
      4. 37.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    4. 38 Conservation Biology and Biodiversity
      1. Introduction
      2. 38.1 The Biodiversity Crisis
      3. 38.2 The Importance of Biodiversity to Human Life
      4. 38.3 Threats to Biodiversity
      5. 38.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index
31.

What evolutionary question is better addressed by the fig-shaped evolutionary tree in Figure 20.17, as opposed to the more typical, single-trunk phylogenetic tree in Figure 20.2?

  1. What was the single organism from which all other forms of life on Earth arose?
  2. Did animals evolve from fungi?
  3. In which species of eukaryote did chloroplasts first appear?
  4. Were chloroplasts and mitochondria transferred to eukaryotic cells through horizontal gene transfer?
32.

Which question, relating to the endosymbiotic hypothesis and the evolution of eukaryotes, is not answered by the eukaryote-first hypothesis, based on the figures?

  1. Which evolved first, the nucleus or prokaryotes?
  2. Which evolved first, mitochondria or prokaryotes?
  3. How and when did the nucleus evolve in eukaryotes?
  4. How and when did prokaryotes evolve?
33.

alt text

The phylogeny above shows the evolution of traits in vertebrates. Based on this phylogeny, a student asks “Does this mean that lizards, frogs and rabbits all possessed hair and an egg with amnion at some point in their evolution?” Based on the phylogeny, how should you respond to the student?

  1. Hair and an amniotic egg were both possessed by all three species at some point in their evolution.
  2. Hair is only a characteristic found in the rabbit evolutionary history. The amniotic egg was possessed by both the rabbit and lizard, but not frogs, at some point in their evolutionary history.
  3. Hair is a characteristic only found in the rabbit evolutionary history. The amniotic egg was possessed by all three species at some point in their evolutionary history.
  4. Hair was possessed by all three species at some point in their evolutionary history. The amniotic egg was possessed by both the lizard and frog, but not the rabbit at some point in their evolutionary history.
34.

alt text

The tree above shows the phylogenetic relationships between four species. A scientist wishes to perform a genetic analysis on all four species in which she determines the number of genetic similarities between all four species. What would she likely find regarding the genetic similarities between species A, B, D and E?

  1. Species D and E would share more genetic similarities with each other than with species A and B, and vice versa.
  2. Species A and E would share more genetic similarities with each other than with species B and D, and vice versa.
  3. Species D and A would share more genetic similarities with each other than with species A and B, and vice versa.
  4. Species D and B would share more genetic similarities with each other than with species A and E.
35.
What is the aim of scientists applying the maximum parsimony concept when creating phylogenetic trees?
  1. The scientists spend more time creating the phylogenetic table.
  2. Scientists find the shortest tree with the smallest number of changes.
  3. A complex, detailed phylogenetic tree diagram is created.
  4. The scientists spend more time researching the data for evolutionary connections.
36.
Dolphins and fish have similar body shapes. Is this feature more likely a homologous or analogous trait? Explain your answer.
  1. Analogous-Dolphins are mammals and fish are not, thus their evolutionary paths are quite separate. They have similar body shapes because of their similar environment.
  2. Analogous-Dolphins and fish are both vertebrates, thus they share an evolutionary history, causing them to have similar body shapes.
  3. Homologous-Dolphins and fish are both vertebrates, thus they have a similar recent evolutionary history, causing them to have similar body shapes.
  4. Homologous-Dolphins are mammals and fish are not, thus their evolutionary paths are quite separate. They have similar body shapes because of their similar environment.
37.
What effect has the advancement of DNA technology had on determining phylogeny?
  1. Morphologic and molecular information often disagree.
  2. Scientists are struggling with molecular systematics.
  3. Information is not reliable because organisms appear to be closely related when they are not.
  4. Computer programs help determine relatedness using DNA sequencing, and morphologic and molecular information is more effective in determining phylogeny.
38.
Describe what maximum parsimony is used for in evolutionary biology.
  1. Maximum parsimony hypothesizes that organisms that share the most traits are the most likely to share a common ancestor.
  2. Maximum parsimony hypothesizes that organisms that share a common ancestor are more likely to have many traits in common.
  3. Maximum parsimony hypothesizes that events occurred in the simplest, most obvious way, and the pathway of evolution probably includes the fewest major events that coincide with the evidence at hand.
  4. Maximum parsimony hypothesizes that organisms that display homologous structures are closely related, while organisms that display analogous structures must have diverged much farther in the past.
39.
The emu in Australia and ostrich in Africa are flightless birds that look similar. One proposed hypothesis was the birds descend from an early common ancestor that spread when the continents were connected. DNA analysis shows that emus and ostriches share more genetic homology with flying birds which live in the same region than with each other. What is the best explanation for these findings?
  1. This is an example of an early shared ancestor.
  2. This is an example of convergent evolution.
  3. This is an example of random DNA homology.
  4. This is an example of divergent evolution.
40.
A scientist decides to investigate the evolutionary connection between closely related bacteria. Which gene would be a good choice to use for establishing relatedness, a very well conserved gene or a poorly conserved sequence? Explain your reasoning.
  1. A very well conserved gene would be a good choice, because well conserved genes undergo sufficient changes during relatively short times, which allows for the study of recent evolutionary events. Well-conserved genes do not undergo changes during short durations.
  2. A poorly conserved gene would be a good choice, because poorly conserved genes show sequence similarity, which is used as evidence of evolutionary relationships between sequences.
  3. A poorly conserved gene would be a good choice, because poorly conserved genes undergo sufficient changes during relatively short times, which allows for the study of recent evolutionary events.
  4. A very well conserved gene would be a good choice, because well conserved genes show sequence similarity, which is used as evidence of evolutionary relationships between sequences.
41.

In a hypothetical population of beetles, there is a wide variety of color, matching the range of coloration of the tree trunks on which the beetles hide from predators. The graphs below illustrate four possible changes in the beetle population as a result of a change in the environment due to pollution that darkened the tree trunks. What would be the most likely change in the coloration of the beetle population after pollution and why?

  1. The coloration range shifted toward more light-colored beetles, as in diagram I. The pollution helped the predators find the darkened tree trunks.
  2. The coloration in the population split into two extremes, as in diagram II. Both the light-colored and the dark-colored beetles were able to hide on the darker tree trunks.
  3. The coloration range became narrower, as in diagram III. The predators selected beetles at the color extremes.
  4. The coloration in the population shifted toward more dark-colored beetles, as in diagram IV. The light-colored beetles were found more easily by the predators than were the dark-colored beetles.
42.
A population of rodents settles on the shore of an island close to the Arctic Circle. The landscape consists mainly of rocks. If the individuals are too large, they cannot hide in crevices to escape hawks. On the other hand, small bodies do not maintain internal temperature in cold weather. Show diagrammatically the change in the population and explain what selective pressures took place.
  1. directional selection
  2. stabilizing selection
  3. disruptive selection
  4. diversifying selection
43.

Five new species of bacteria were discovered in Antarctic ice core samples. The nucleotide (base sequences of rRNA subunits were determined for the new species. The table below shows the number of nucleotide differences between the species.

Species 1 2 3 4 5
1 - 3 19 18 27
2 - 19 18 26
3 - 1 27
4 - 27

Which of the following phylogenetic trees is most consistent with the data?

44.

Draw the phylogenetic tree for the species below. Identify where on the tree each feature evolved.

.
Figure 20.20
  1. The ostrich branched off first, followed by the snake, then the frog, then the shark and then the lancelet.
  2. The shark branched off first, followed by the lancelet, then the frog, then the ostrich and then the snake.
  3. The lancelet branched off first, followed by the shark, then the frog, then the snake and then the ostrich.
  4. The lancelet branched off first, followed by the shark, then the ostrich, then the snake and then the frog.
45.
Barbara McClintock discovered transposons while working on maize genetics. What are the transposons composed of when they are able to shift from one location to another?
  1. segments of RNA
  2. Plasmids
  3. segments of DNA
  4. proteins
46.
What is Horizontal Gene Transfer (HGT)?
  1. the proposal that eukaryotes developed a nucleus first, and then their mitochondrion
  2. the transmission of genetic material from one species to another through mechanisms other than from parent to offspring
  3. the fusion of two prokaryotic genomes
  4. the division of kingdom in the taxonomic classification
47.
What is referred to as the transfer of genes by a mechanism that does not involve asexual reproduction?
  1. web of life
  2. meiosis
  3. gene fusion
  4. horizontal gene transfer
48.
Which of the following describes small, virus-like particles that act as a mechanism of gene transfer between prokaryotes?
  1. gene transfer agents
  2. horizontal gene transfer
  3. vertical gene transfer
  4. basal taxon
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Mar 8, 2018 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.