Skip to Content
OpenStax Logo
Biology for AP® Courses

Critical Thinking Questions

Biology for AP® CoursesCritical Thinking Questions
Buy book
  1. Preface
  2. Unit 1
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  3. Unit 2
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reaction of Photosynthesis
      4. 8.3 Using Light to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  4. Unit 3
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkages
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 16 Gene Regulation
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcriptional Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  5. Unit 4
    1. 18 Evolution and Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
  6. Unit 5
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infection and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  7. Unit 6
    1. 23 Plant Form and Physiology
      1. Introduction
      2. 23.1 The Plant Body
      3. 23.2 Stems
      4. 23.3 Roots
      5. 23.4 Leaves
      6. 23.5 Transport of Water and Solutes in Plants
      7. 23.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
  8. Unit 7
    1. 24 The Animal Body: Basic Form and Function
      1. Introduction
      2. 24.1 Animal Form and Function
      3. 24.2 Animal Primary Tissues
      4. 24.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
    2. 25 Animal Nutrition and the Digestive System
      1. Introduction
      2. 25.1 Digestive Systems
      3. 25.2 Nutrition and Energy Production
      4. 25.3 Digestive System Processes
      5. 25.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 26 The Nervous System
      1. Introduction
      2. 26.1 Neurons and Glial Cells
      3. 26.2 How Neurons Communicate
      4. 26.3 The Central Nervous System
      5. 26.4 The Peripheral Nervous System
      6. 26.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 27 Sensory Systems
      1. Introduction
      2. 27.1 Sensory Processes
      3. 27.2 Somatosensation
      4. 27.3 Taste and Smell
      5. 27.4 Hearing and Vestibular Sensation
      6. 27.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Science Practice Challenge Questions
    5. 28 The Endocrine System
      1. Introduction
      2. 28.1 Types of Hormones
      3. 28.2 How Hormones Work
      4. 28.3 Regulation of Body Processes
      5. 28.4 Regulation of Hormone Production
      6. 28.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 29 The Musculoskeletal System
      1. Introduction
      2. 29.1 Types of Skeletal Systems
      3. 29.2 Bone
      4. 29.3 Joints and Skeletal Movement
      5. 29.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Science Practice Challenge Questions
    7. 30 The Respiratory System
      1. Introduction
      2. 30.1 Systems of Gas Exchange
      3. 30.2 Gas Exchange across Respiratory Surfaces
      4. 30.3 Breathing
      5. 30.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    8. 31 The Circulatory System
      1. Introduction
      2. 31.1 Overview of the Circulatory System
      3. 31.2 Components of the Blood
      4. 31.3 Mammalian Heart and Blood Vessels
      5. 31.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    9. 32 Osmotic Regulation and Excretion
      1. Introduction
      2. 32.1 Osmoregulation and Osmotic Balance
      3. 32.2 The Kidneys and Osmoregulatory Organs
      4. 32.3 Excretion Systems
      5. 32.4 Nitrogenous Wastes
      6. 32.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
    10. 33 The Immune System
      1. Introduction
      2. 33.1 Innate Immune Response
      3. 33.2 Adaptive Immune Response
      4. 33.3 Antibodies
      5. 33.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    11. 34 Animal Reproduction and Development
      1. Introduction
      2. 34.1 Reproduction Methods
      3. 34.2 Fertilization
      4. 34.3 Human Reproductive Anatomy and Gametogenesis
      5. 34.4 Hormonal Control of Human Reproduction
      6. 34.5 Fertilization and Early Embryonic Development
      7. 34.6 Organogenesis and Vertebrate Formation
      8. 34.7 Human Pregnancy and Birth
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
  9. Unit 8
    1. 35 Ecology and the Biosphere
      1. Introduction
      2. 35.1 The Scope of Ecology
      3. 35.2 Biogeography
      4. 35.3 Terrestrial Biomes
      5. 35.4 Aquatic Biomes
      6. 35.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    2. 36 Population and Community Ecology
      1. Introduction
      2. 36.1 Population Demography
      3. 36.2 Life Histories and Natural Selection
      4. 36.3 Environmental Limits to Population Growth
      5. 36.4 Population Dynamics and Regulation
      6. 36.5 Human Population Growth
      7. 36.6 Community Ecology
      8. 36.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    3. 37 Ecosystems
      1. Introduction
      2. 37.1 Ecology for Ecosystems
      3. 37.2 Energy Flow through Ecosystems
      4. 37.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    4. 38 Conservation Biology and Biodiversity
      1. Introduction
      2. 38.1 The Biodiversity Crisis
      3. 38.2 The Importance of Biodiversity to Human Life
      4. 38.3 Threats to Biodiversity
      5. 38.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index
25.
What conclusions can you draw about the relationship between the way in which the present-day theory of evolution developed and the credibility of the theory? Explain your thinking.
  1. When the theory of evolution was first proposed, it met with a lot of criticism and disbelief, but it is widely supported today. Theories that have withstood a larger amount of criticism are more credible than those that are accepted easily
  2. The theory of evolution has its foundation in both biological and geological observations, making it a more credible theory because it can explain more about the world
  3. The theory of evolution relies on the heritability of traits, but the mechanism of this inheritance was not understood when the theory was developed. This reduces the credibility of the theory because the people who created it did not understand how it worked
  4. It is meaningful that two naturalists working independently from each other offered the same explanation for the same set of phenomena. When two people independently look at the same evidence and come to the same conclusion, this reinforces the credibility of that conclusion
26.
Describe how an adaptation, such as better running speed, relates to natural selection.
  1. Natural selection produces beneficial adaptations, such as better running speed, in individuals that run more frequently
  2. Natural selection randomly mutates individuals’ genetic code until it produces beneficial adaptations, such as better running speed
  3. Natural selection produces adaptations, such as better running speed, to help individuals survive and reproduce
  4. Natural selection reproduces individuals with favorable genetic traits-such as the adaptation of better running speed-over time.
27.
Give an example of convergent evolution and explain how it supports the theory of evolution by natural selection.
  1. An example of convergent evolution is the development of the same function, swimming, in organisms that live in different parts of the globe, such as Arctic beluga whales and Antarctic right whales. The fact that organisms that do not come in contact with each other have developed the same traits suggests that natural selection can produce similar adaptations in organisms who share a similar environment
  2. An example of convergent evolution is the set of adaptations, such as better running speed or more efficient hunting, developed by a species in response to competition with a new species that moves into the same region. The fact that a species adapts after it comes into contact with a competitor suggests that natural selection works more quickly with higher selective pressures.
  3. An example of convergent evolution is the development of an ancestral structure, a limb, into two different modern structures, such as a hand and a flipper. The fact that natural selection can cause a structure to develop down two different pathways due to different environmental conditions supports the theory of evolution
  4. An example of convergent evolution is the development of the same function, flying, in organisms that do not share a recent common ancestry, such as insects and birds. The fact that wings that allow flight have developed from very different original structures suggests that the process of natural selection can produce similar adaptations in two very different types of organisms who share a similar environment
28.
Why do scientists consider vestigial structures evidence for evolution?
  1. Vestigial structures are the result of convergent evolution, so they are good evidence that natural selection act similarly in similar environmental conditions.
  2. Vestigial structures are the result of common ancestry, so they are good evidence that different populations of organisms evolved from a common point.
  3. Vestigial structures are the result of convergent evolution, so they are good evidence for an end goal to evolution.
  4. Vestigial structures are the result of common ancestry, so they are good evidence for a common origin of all life.
29.

Reproduction in sexually-reproducing organisms occurs when two sex cells, or gametes, fuse. In fish, this occurs when sperm swim through the water to find the ovum. In flowers, pollen is dispersed through the air and carried to another flower. Explain what evolutionary adaptations for reproduction occur in humans, based on the fact that we are land-based animals.

30.

While examining the human genome, you find a gene that is not homologous to any other organisms known to man. You conclude that this gene must be unique to the human species and could not have evolved from another organism. Would this discovery suggest that humans do not share a common ancestor with all other organisms on Earth? Explain your answer.

31.

Mutations in the glucose 6-phosphate dehydrogenase (G6PD) gene can cause a rare anemia when inherited. However, homozygotes with this mutation are less prone to malaria infection, a disease that historically was the most widespread deadly disease among humans. Predict how this mutation would affect the fitness of individuals living in countries where malaria is endemic.

32.
How does the scientific meaning of “theory” differ from the common vernacular meaning?
  1. A scientific theory is a hypothesis that needs to be tested, whereas people often use theory to mean a simple guess.
  2. A scientific theory is a statement that has been proven correct, while people often use it to mean a statement that has not yet been verified.
  3. A scientific theory is a thoroughly tested set of explanations for a body of observations of nature, while people often use it to mean a guess or speculation.
  4. A scientific theory is a random guess, while people often use it to mean a statement that is somewhat based in fact.
33.
Why is having a way of defining species and distinguishing between them important for the study of evolution?
  1. A distinction between species allows scientists to understand the common origin of all species.
  2. A common definition of species allows scientists to agree on all aspects of the theory of evolution.
  3. Divergence can only occur at the species level: it does not occur to larger taxa. Therefore it is important to know which groups are distinct species.
  4. In the study of evolution, the species is the unit over which change is measured.
34.
If a population stopped reproducing sexually, but still reproduced asexually, how would its genetic variation be affected over time? Could speciation occur in this situation? Explain your ideas.
  1. Genetic variation would increase and speciation would be possible
  2. Genetic variation would increase and speciation would not be possible.
  3. Genetic variation would decrease and speciation would be possible.
  4. Genetic variation would decrease and speciation would not be possible.
35.
What role do prezygotic and postzygotic barriers play in speciation?
  1. Prezygotic and postzygotic barriers allow for the formation of less-fit hybrids that reinforces speciation.
  2. Prezygotic and postzygotic barriers prevent interbreeding of species such that there is no gene flow between them.
  3. Prezygotic and postzygotic barriers prevent migration of the two species, causing them to remain in contact with each other and begin to interbreed.
  4. Prezygotic and postzygotic barriers are present only in newly-formed species, allowing scientists to identify the time of divergence of the species.
36.

A population of flowers was separated into two subpopulations when a new river cut through the plain in which they were growing. The number of interbreeding events per year for the two subpopulations of flowers is shown in the graph below. Twenty-four years after they were separated, can you conclude that the two subpopulations of flowers have become new species? Why or why not?

The figure is a line graph. The x-axis is labelled “Years after new waterway” and has tick marks for every whole number from 1 to 24. The y-axis is labelled “Number of interbreeding events” and has tick marks for 0, 20, 40, 60, 80, 100, 120. The line’s origin begins at above 100 interbreeding events. The line follows a general downward path with some small peaks. In Years 22 to 24, the value is near 0 percent.
Figure 18.26
37.
Which type of speciation, allopatric or sympatric, is more common? Why?
  1. Allopatric speciation is more common because it prevents gene flow between the species.
  2. Allopatric speciation is more common because it involves stronger prezygotic barriers.
  3. Sympatric speciation is more common because it prevents gene flow between the species.
  4. Sympatric speciation is more common because it involves stronger prezygotic barriers.
38.
Use adaptive radiation to explain the diversification of the finches Darwin observed in the Galapagos.
  1. The finches likely shared a common ancestor when they came to the island, but exhibited different traits. Each species of finch settled the island where its particular traits would be the most adaptive.
  2. The finches likely originated as one parent species, but over time mutations caused them to develop reproductive barriers and separate into different species. To reduce competition, the species then radiated out to inhabit different islands.
  3. The finches likely dispersed from one parent species, and natural selection based on different food sources in differing habitats led to adaptive changes, evidenced in the different beak shapes of the different species-each suited to a different food type.
  4. It is likely that a series of cataclysmic events caused an original finch species to diverge into the many finch species that inhabited the islands when Darwin observed them. The different species then radiated out to the different islands and adapted to the different conditions on each.
39.
Describe a situation where hybrid reproduction would cause two species to fuse into one.
  1. Separate species cannot interbreed, so hybrid reproduction does not occur in nature
  2. If the hybrid offspring are more fit than the parents, reproduction would likely continue between both species and the hybrids, eventually bringing all organisms under the umbrella of one species
  3. Two species that have recently diverged from each other can reproduce with each other, creating hybrid individuals that belong to the species of the parents’ common ancestor.
  4. If two species occupy the same niche in the same area, they can either compete or they can collaborate and reproduce with each other, eventually fusing into a single species
40.
What do both rate of speciation models have in common? Explain.
  1. Both models ignore the influence of gene flow for simplicity’s sake.
  2. Both models apply only to island chains.
  3. Both models require the influence of cataclysmic events which precipitate rapid adaptation and speciation
  4. Both models conform to the rules of natural selection and the influences of gene flow, genetic drift, and mutation
41.
Describe a situation where hybrid reproduction would cause two species to continue divergence.
  1. f two closely related species continue to produce hybrids, the hybrids will compete with both species, causing them to find new niches which will further their divergence
  2. If two closely related species continue to produce hybrids, they will develop reproductive barriers to prevent production of hybrids, to ensure that they remain separate species.
  3. If two closely related species continue to produce hybrids that are less fit than the parent species, there would be reinforcement of divergence.
  4. f two closely related species continue to produce hybrids they will always converge into a single species
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Mar 8, 2018 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.