Skip to Content
OpenStax Logo
Biology 2e

35.1 Neurons and Glial Cells

Biology 2e35.1 Neurons and Glial Cells
  1. Preface
  2. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  3. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 The Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reactions of Photosynthesis
      4. 8.3 Using Light Energy to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  4. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkage
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 16 Gene Expression
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcription Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  5. Evolutionary Processes
    1. 18 Evolution and the Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Speciation Rates
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  6. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infections and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes: Bacteria and Archaea
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 23 Protists
      1. Introduction
      2. 23.1 Eukaryotic Origins
      3. 23.2 Characteristics of Protists
      4. 23.3 Groups of Protists
      5. 23.4 Ecology of Protists
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 24 Fungi
      1. Introduction
      2. 24.1 Characteristics of Fungi
      3. 24.2 Classifications of Fungi
      4. 24.3 Ecology of Fungi
      5. 24.4 Fungal Parasites and Pathogens
      6. 24.5 Importance of Fungi in Human Life
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 25 Seedless Plants
      1. Introduction
      2. 25.1 Early Plant Life
      3. 25.2 Green Algae: Precursors of Land Plants
      4. 25.3 Bryophytes
      5. 25.4 Seedless Vascular Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    6. 26 Seed Plants
      1. Introduction
      2. 26.1 Evolution of Seed Plants
      3. 26.2 Gymnosperms
      4. 26.3 Angiosperms
      5. 26.4 The Role of Seed Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 27 Introduction to Animal Diversity
      1. Introduction
      2. 27.1 Features of the Animal Kingdom
      3. 27.2 Features Used to Classify Animals
      4. 27.3 Animal Phylogeny
      5. 27.4 The Evolutionary History of the Animal Kingdom
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 28 Invertebrates
      1. Introduction
      2. 28.1 Phylum Porifera
      3. 28.2 Phylum Cnidaria
      4. 28.3 Superphylum Lophotrochozoa: Flatworms, Rotifers, and Nemerteans
      5. 28.4 Superphylum Lophotrochozoa: Molluscs and Annelids
      6. 28.5 Superphylum Ecdysozoa: Nematodes and Tardigrades
      7. 28.6 Superphylum Ecdysozoa: Arthropods
      8. 28.7 Superphylum Deuterostomia
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    9. 29 Vertebrates
      1. Introduction
      2. 29.1 Chordates
      3. 29.2 Fishes
      4. 29.3 Amphibians
      5. 29.4 Reptiles
      6. 29.5 Birds
      7. 29.6 Mammals
      8. 29.7 The Evolution of Primates
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  7. Plant Structure and Function
    1. 30 Plant Form and Physiology
      1. Introduction
      2. 30.1 The Plant Body
      3. 30.2 Stems
      4. 30.3 Roots
      5. 30.4 Leaves
      6. 30.5 Transport of Water and Solutes in Plants
      7. 30.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 31 Soil and Plant Nutrition
      1. Introduction
      2. 31.1 Nutritional Requirements of Plants
      3. 31.2 The Soil
      4. 31.3 Nutritional Adaptations of Plants
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 32 Plant Reproduction
      1. Introduction
      2. 32.1 Reproductive Development and Structure
      3. 32.2 Pollination and Fertilization
      4. 32.3 Asexual Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. Animal Structure and Function
    1. 33 The Animal Body: Basic Form and Function
      1. Introduction
      2. 33.1 Animal Form and Function
      3. 33.2 Animal Primary Tissues
      4. 33.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 34 Animal Nutrition and the Digestive System
      1. Introduction
      2. 34.1 Digestive Systems
      3. 34.2 Nutrition and Energy Production
      4. 34.3 Digestive System Processes
      5. 34.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 35 The Nervous System
      1. Introduction
      2. 35.1 Neurons and Glial Cells
      3. 35.2 How Neurons Communicate
      4. 35.3 The Central Nervous System
      5. 35.4 The Peripheral Nervous System
      6. 35.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 36 Sensory Systems
      1. Introduction
      2. 36.1 Sensory Processes
      3. 36.2 Somatosensation
      4. 36.3 Taste and Smell
      5. 36.4 Hearing and Vestibular Sensation
      6. 36.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 37 The Endocrine System
      1. Introduction
      2. 37.1 Types of Hormones
      3. 37.2 How Hormones Work
      4. 37.3 Regulation of Body Processes
      5. 37.4 Regulation of Hormone Production
      6. 37.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 38 The Musculoskeletal System
      1. Introduction
      2. 38.1 Types of Skeletal Systems
      3. 38.2 Bone
      4. 38.3 Joints and Skeletal Movement
      5. 38.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 39 The Respiratory System
      1. Introduction
      2. 39.1 Systems of Gas Exchange
      3. 39.2 Gas Exchange across Respiratory Surfaces
      4. 39.3 Breathing
      5. 39.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 40 The Circulatory System
      1. Introduction
      2. 40.1 Overview of the Circulatory System
      3. 40.2 Components of the Blood
      4. 40.3 Mammalian Heart and Blood Vessels
      5. 40.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    9. 41 Osmotic Regulation and Excretion
      1. Introduction
      2. 41.1 Osmoregulation and Osmotic Balance
      3. 41.2 The Kidneys and Osmoregulatory Organs
      4. 41.3 Excretion Systems
      5. 41.4 Nitrogenous Wastes
      6. 41.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    10. 42 The Immune System
      1. Introduction
      2. 42.1 Innate Immune Response
      3. 42.2 Adaptive Immune Response
      4. 42.3 Antibodies
      5. 42.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    11. 43 Animal Reproduction and Development
      1. Introduction
      2. 43.1 Reproduction Methods
      3. 43.2 Fertilization
      4. 43.3 Human Reproductive Anatomy and Gametogenesis
      5. 43.4 Hormonal Control of Human Reproduction
      6. 43.5 Human Pregnancy and Birth
      7. 43.6 Fertilization and Early Embryonic Development
      8. 43.7 Organogenesis and Vertebrate Formation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  9. Ecology
    1. 44 Ecology and the Biosphere
      1. Introduction
      2. 44.1 The Scope of Ecology
      3. 44.2 Biogeography
      4. 44.3 Terrestrial Biomes
      5. 44.4 Aquatic Biomes
      6. 44.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 45 Population and Community Ecology
      1. Introduction
      2. 45.1 Population Demography
      3. 45.2 Life Histories and Natural Selection
      4. 45.3 Environmental Limits to Population Growth
      5. 45.4 Population Dynamics and Regulation
      6. 45.5 Human Population Growth
      7. 45.6 Community Ecology
      8. 45.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 46 Ecosystems
      1. Introduction
      2. 46.1 Ecology of Ecosystems
      3. 46.2 Energy Flow through Ecosystems
      4. 46.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 47 Conservation Biology and Biodiversity
      1. Introduction
      2. 47.1 The Biodiversity Crisis
      3. 47.2 The Importance of Biodiversity to Human Life
      4. 47.3 Threats to Biodiversity
      5. 47.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index
By the end of this section, you will be able to do the following:
  • List and describe the functions of the structural components of a neuron
  • List and describe the four main types of neurons
  • Compare the functions of different types of glial cells

Nervous systems throughout the animal kingdom vary in structure and complexity, as illustrated by the variety of animals shown in Figure 35.2. Some organisms, like sea sponges, lack a true nervous system. Others, like jellyfish, lack a true brain and instead have a system of separate but connected nerve cells (neurons) called a “nerve net.” Echinoderms such as sea stars have nerve cells that are bundled into fibers called nerves. Flatworms of the phylum Platyhelminthes have both a central nervous system (CNS), made up of a small “brain” and two nerve cords, and a peripheral nervous system (PNS) containing a system of nerves that extend throughout the body. The insect nervous system is more complex but also fairly decentralized. It contains a brain, ventral nerve cord, and ganglia (clusters of connected neurons). These ganglia can control movements and behaviors without input from the brain. Octopi may have the most complicated of invertebrate nervous systems—they have neurons that are organized in specialized lobes and eyes that are structurally similar to vertebrate species.

Illustration A shows the nerve net of a hydra, which resembles a fish net surrounding the body. The hydra is plant like, with a trunk and tentacle like extensions at the top of the trunk.  Illustration B shows the nervous system of a sea star. A nerve ring is present in the center of the body. Radiating out from this ring into the five arms are radial nerves. Illustration C shows the nervous system of a planarian, or flatworm. The flatworm has centralized ganglia, or brains, around each eye in the anterior end, and two nerve cords that run along the sides of the body. Transverse nerves connect the nerve cords together. Illustration D shows the nervous system of a bee. The central ganglia, or brain, is located in the head. The segmental ganglia runs along the lower part of the body. Bumps of nerve cell bodies, called peripheral ganglia, occur periodically along the nerve cord. Illustration E shows the nervous system of the octopus, which consists of a large brain located between the two eyes, and nerves that run into the body and arms. Two large ganglia exist in the nerves located in the body. Illustration F shows the nervous system of a human, which consists of a central nervous system composed of the brain and spinal cord, and a peripheral nervous system composed of the nerves running into the rest of the body.
Figure 35.2 Nervous systems vary in structure and complexity. In (a) cnidarians, nerve cells form a decentralized nerve net. In (b) echinoderms, nerve cells are bundled into fibers called nerves. In animals exhibiting bilateral symmetry such as (c) planarians, neurons cluster into an anterior brain that processes information. In addition to a brain, (d) arthropods have clusters of nerve cell bodies, called peripheral ganglia, located along the ventral nerve cord. Mollusks such as squid and (e) octopi, which must hunt to survive, have complex brains containing millions of neurons. In (f) vertebrates, the brain and spinal cord comprise the central nervous system, while neurons extending into the rest of the body comprise the peripheral nervous system. (credit e: modification of work by Michael Vecchione, Clyde F.E. Roper, and Michael J. Sweeney, NOAA; credit f: modification of work by NIH)

Compared to invertebrates, vertebrate nervous systems are more complex, centralized, and specialized. While there is great diversity among different vertebrate nervous systems, they all share a basic structure: a CNS that contains a brain and spinal cord and a PNS made up of peripheral sensory and motor nerves. One interesting difference between the nervous systems of invertebrates and vertebrates is that the nerve cords of many invertebrates are located ventrally whereas the vertebrate spinal cords are located dorsally. There is debate among evolutionary biologists as to whether these different nervous system plans evolved separately or whether the invertebrate body plan arrangement somehow “flipped” during the evolution of vertebrates.

Link to Learning

Watch this video of biologist Mark Kirschner discussing the “flipping” phenomenon of vertebrate evolution.

The nervous system is made up of neurons, specialized cells that can receive and transmit chemical or electrical signals, and glia, cells that provide support functions for the neurons by playing an information processing role that is complementary to neurons. A neuron can be compared to an electrical wire—it transmits a signal from one place to another. Glia can be compared to the workers at the electric company who make sure wires go to the right places, maintain the wires, and take down wires that are broken. Although glia have been compared to workers, recent evidence suggests that they also usurp some of the signaling functions of neurons.

There is great diversity in the types of neurons and glia that are present in different parts of the nervous system. There are four major types of neurons, and they share several important cellular components.

Neurons

The nervous system of the common laboratory fly, Drosophila melanogaster, contains around 100,000 neurons, the same number as a lobster. This number compares to 75 million in the mouse and 300 million in the octopus. A human brain contains around 86 billion neurons. Despite these very different numbers, the nervous systems of these animals control many of the same behaviors—from basic reflexes to more complicated behaviors like finding food and courting mates. The ability of neurons to communicate with each other as well as with other types of cells underlies all of these behaviors.

Most neurons share the same cellular components. But neurons are also highly specialized—different types of neurons have different sizes and shapes that relate to their functional roles.

Parts of a Neuron

Like other cells, each neuron has a cell body (or soma) that contains a nucleus, smooth and rough endoplasmic reticulum, Golgi apparatus, mitochondria, and other cellular components. Neurons also contain unique structures, illustrated in Figure 35.3 for receiving and sending the electrical signals that make neuronal communication possible. Dendrites are tree-like structures that extend away from the cell body to receive messages from other neurons at specialized junctions called synapses. Although some neurons do not have any dendrites, some types of neurons have multiple dendrites. Dendrites can have small protrusions called dendritic spines, which further increase surface area for possible synaptic connections.

Once a signal is received by the dendrite, it then travels passively to the cell body. The cell body contains a specialized structure, the axon hillock that integrates signals from multiple synapses and serves as a junction between the cell body and an axon. An axon is a tube-like structure that propagates the integrated signal to specialized endings called axon terminals. These terminals in turn synapse on other neurons, muscle, or target organs. Chemicals released at axon terminals allow signals to be communicated to these other cells. Neurons usually have one or two axons, but some neurons, like amacrine cells in the retina, do not contain any axons. Some axons are covered with myelin, which acts as an insulator to minimize dissipation of the electrical signal as it travels down the axon, greatly increasing the speed of conduction. This insulation is important as the axon from a human motor neuron can be as long as a meter—from the base of the spine to the toes. The myelin sheath is not actually part of the neuron. Myelin is produced by glial cells. Along the axon there are periodic gaps in the myelin sheath. These gaps are called nodes of Ranvier and are sites where the signal is “recharged” as it travels along the axon.

It is important to note that a single neuron does not act alone—neuronal communication depends on the connections that neurons make with one another (as well as with other cells, like muscle cells). Dendrites from a single neuron may receive synaptic contact from many other neurons. For example, dendrites from a Purkinje cell in the cerebellum are thought to receive contact from as many as 200,000 other neurons.

Visual Connection

Illustration shows a neuron. The main part of the cell body, called the soma, contains the nucleus. Branch-like dendrites project from three sides of the soma. A long, thin axon projects from the fourth side. The axon branches at the end. The tip of the axon is in close proximity to dendrites of an adjacent nerve cell. The narrow space between the axon and dendrites is called the synapse. Cells called oligodendrocytes are located next to the axon. Projections from the oligodendrocytes wrap around the axon, forming a myelin sheath. The myelin sheath is not continuous, and gaps where the axon is exposed are called nodes of Ranvier.
Figure 35.3 Neurons contain organelles common to many other cells, such as a nucleus and mitochondria. They also have more specialized structures, including dendrites and axons.

Which of the following statements is false?

  1. The soma is the cell body of a nerve cell.
  2. Myelin sheath provides an insulating layer to the dendrites.
  3. Axons carry the signal from the soma to the target.
  4. Dendrites carry the signal to the soma.

Types of Neurons

There are different types of neurons, and the functional role of a given neuron is intimately dependent on its structure. There is an amazing diversity of neuron shapes and sizes found in different parts of the nervous system (and across species), as illustrated by the neurons shown in Figure 35.4.

Part A shows a pyramidal cell with two long, branched projections on either end of the soma. Dendrites branch from either side. Part B shows a Purkinje cell with highly branched dendrites opposite the axon. Part C shows cells with long, thin axons. The dendrites are less branched than in pyramidal or Purkinje cells.
Figure 35.4 There is great diversity in the size and shape of neurons throughout the nervous system. Examples include (a) a pyramidal cell from the cerebral cortex, (b) a Purkinje cell from the cerebellar cortex, and (c) olfactory cells from the olfactory epithelium and olfactory bulb.

While there are many defined neuron cell subtypes, neurons are broadly divided into four basic types: unipolar, bipolar, multipolar, and pseudounipolar. Figure 35.5 illustrates these four basic neuron types. Unipolar neurons have only one structure that extends away from the soma. These neurons are not found in vertebrates but are found in insects where they stimulate muscles or glands. A bipolar neuron has one axon and one dendrite extending from the soma. An example of a bipolar neuron is a retinal bipolar cell, which receives signals from photoreceptor cells that are sensitive to light and transmits these signals to ganglion cells that carry the signal to the brain. Multipolar neurons are the most common type of neuron. Each multipolar neuron contains one axon and multiple dendrites. Multipolar neurons can be found in the central nervous system (brain and spinal cord). An example of a multipolar neuron is a Purkinje cell in the cerebellum, which has many branching dendrites but only one axon. Pseudounipolar cells share characteristics with both unipolar and bipolar cells. A pseudounipolar cell has a single process that extends from the soma, like a unipolar cell, but this process later branches into two distinct structures, like a bipolar cell. Most sensory neurons are pseudounipolar and have an axon that branches into two extensions: one connected to dendrites that receive sensory information and another that transmits this information to the spinal cord.

The unipolar cell has a single, long axon extending from the cell body. The bipolar neuron has two axons projecting from opposite sides of the cell body. The multipolar neuron has one long axon and several short, highly branched axons extending in all directions. The pseudounipolar neuron has one axon that forms two branches a short distance from the cell body, each of which extends in a different direction.
Figure 35.5 Neurons are broadly divided into four main types based on the number and placement of axons: (1) unipolar, (2) bipolar, (3) multipolar, and (4) pseudounipolar.

Everyday Connection

Neurogenesis

At one time, scientists believed that people were born with all the neurons they would ever have. Research performed during the last few decades indicates that neurogenesis, the birth of new neurons, continues into adulthood. Neurogenesis was first discovered in songbirds that produce new neurons while learning songs. For mammals, new neurons also play an important role in learning: about 1000 new neurons develop in the hippocampus (a brain structure involved in learning and memory) each day. While most of the new neurons will die, researchers found that an increase in the number of surviving new neurons in the hippocampus correlated with how well rats learned a new task. Interestingly, both exercise and some antidepressant medications also promote neurogenesis in the hippocampus. Stress has the opposite effect. While neurogenesis is quite limited compared to regeneration in other tissues, research in this area may lead to new treatments for disorders such as Alzheimer’s, stroke, and epilepsy.

How do scientists identify new neurons? A researcher can inject a compound called bromodeoxyuridine (BrdU) into the brain of an animal. While all cells will be exposed to BrdU, BrdU will only be incorporated into the DNA of newly generated cells that are in S phase. A technique called immunohistochemistry can be used to attach a fluorescent label to the incorporated BrdU, and a researcher can use fluorescent microscopy to visualize the presence of BrdU, and thus new neurons, in brain tissue. Figure 35.6 is a micrograph which shows fluorescently labeled neurons in the hippocampus of a rat.

In the micrograph, several cells are fluorescently shown as green only. Three cells are shown as red only, and four cells are shown as being both green and red. The cells shown as green and red are astrocytes, and the cells shown red are neurons. The neurons are oval and about ten microns long. Astrocytes are slightly larger and irregularly shaped.
Figure 35.6 This micrograph shows fluorescently labeled new neurons in a rat hippocampus. Cells that are actively dividing have bromodoxyuridine (BrdU) incorporated into their DNA and are labeled in red. Cells that express glial fibrillary acidic protein (GFAP) are labeled in green. Astrocytes, but not neurons, express GFAP. Thus, cells that are labeled both red and green are actively dividing astrocytes, whereas cells labeled red only are actively dividing neurons. (credit: modification of work by Dr. Maryam Faiz, et. al., University of Barcelona; scale-bar data from Matt Russell)

Link to Learning

This site contains more information about neurogenesis, including an interactive laboratory simulation and a video that explains how BrdU labels new cells.

Glia

While glia are often thought of as the supporting cast of the nervous system, the number of glial cells in the brain actually outnumbers the number of neurons by a factor of ten. Neurons would be unable to function without the vital roles that are fulfilled by these glial cells. Glia guide developing neurons to their destinations, buffer ions and chemicals that would otherwise harm neurons, and provide myelin sheaths around axons. Scientists have recently discovered that they also play a role in responding to nerve activity and modulating communication between nerve cells. When glia do not function properly, the result can be disastrous—most brain tumors are caused by mutations in glia.

Types of Glia

There are several different types of glia with different functions, two of which are shown in Figure 35.7. Astrocytes, shown in Figure 35.8a make contact with both capillaries and neurons in the CNS. They provide nutrients and other substances to neurons, regulate the concentrations of ions and chemicals in the extracellular fluid, and provide structural support for synapses. Astrocytes also form the blood-brain barrier—a structure that blocks entrance of toxic substances into the brain. Astrocytes, in particular, have been shown through calcium imaging experiments to become active in response to nerve activity, transmit calcium waves between astrocytes, and modulate the activity of surrounding synapses. Satellite glia provide nutrients and structural support for neurons in the PNS. Microglia scavenge and degrade dead cells and protect the brain from invading microorganisms. Oligodendrocytes, shown in Figure 35.8b form myelin sheaths around axons in the CNS. One axon can be myelinated by several oligodendrocytes, and one oligodendrocyte can provide myelin for multiple neurons. This is distinctive from the PNS where a single Schwann cell provides myelin for only one axon as the entire Schwann cell surrounds the axon. Radial glia serve as scaffolds for developing neurons as they migrate to their end destinations. Ependymal cells line fluid-filled ventricles of the brain and the central canal of the spinal cord. They are involved in the production of cerebrospinal fluid, which serves as a cushion for the brain, moves the fluid between the spinal cord and the brain, and is a component for the choroid plexus.

Illustration A shows various types of glial cells surrounding a multipolar nerve of the central nervous system. Oligodendrocytes have an oval body and protrusions that wrap around the axon. Astrocytes are round and slightly larger than neurons, with many extensions projecting outward to neurons and other cells. Microglia are small and rectangular, with many fine projections. Ependymal cells have small, round bodies lined up in a row. Long extensions connect from the ependymal cells to an astrocyte. Illustration B shows a pseudounipolar cell of the peripheral nervous system. Schwann cells wrap around the branched axon, and satellite cells surround the neuron cell body.
Figure 35.7 Glial cells support neurons and maintain their environment. Glial cells of the (a) central nervous system include oligodendrocytes, astrocytes, ependymal cells, and microglial cells. Oligodendrocytes form the myelin sheath around axons. Astrocytes provide nutrients to neurons, maintain their extracellular environment, and provide structural support. Microglia scavenge pathogens and dead cells. Ependymal cells produce cerebrospinal fluid that cushions the neurons. Glial cells of the (b) peripheral nervous system include Schwann cells, which form the myelin sheath, and satellite cells, which provide nutrients and structural support to neurons.
Astrocytes, fluorescently labeled green, are irregularly shaped with long extensions that provide support to nerve cells. Oligodendrocytes, also labeled green, are round with long, branched extensions that form the myelin sheath of nerve cells.
Figure 35.8 (a) Astrocytes and (b) oligodendrocytes are glial cells of the central nervous system. (credit a: modification of work by Uniformed Services University; credit b: modification of work by Jurjen Broeke; scale-bar data from Matt Russell)
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
Citation information

© Mar 28, 2018 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.