Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology 2e

Chapter Summary

Biology 2eChapter Summary

29.1 Chordates

The five characteristic features of chordates present during some time of their life cycles are a notochord, a dorsal hollow tubular nerve cord, pharyngeal slits, endostyle/thyroid gland, and a post-anal tail. Chordata contains two clades of invertebrates: Urochordata (tunicates) and Cephalochordata (lancelets), together with the vertebrates in the Vertebrata/Craniata. Lancelets are suspension feeders that feed on phytoplankton and other microorganisms. Most tunicates live on the ocean floor and are suspension feeders. Which of the two invertebrate chordate clades is more closely related to the vertebrates continues to be debated. Vertebrata is named for the vertebral column, which is a feature of almost all members of this clade. The name Craniata (organisms with a cranium) is considered to be synonymous with Vertebrata.

29.2 Fishes

The earliest vertebrates that diverged from the invertebrate chordates were the agnathan jawless fishes, whose extant members include the hagfishes and lampreys. Hagfishes are eel-like scavengers that feed on dead invertebrates and other fishes. Lampreys are characterized by a toothed, funnel-like sucking mouth, and most species are parasitic or predaceous on other fishes. Fishes with jaws (gnathostomes) evolved later. Jaws allowed early gnathostomes to exploit new food sources.

Gnathostomes include the cartilaginous fishes and the bony fishes, as well as all other tetrapods (amphibians, reptiles, mammals). Cartilaginous fishes include sharks, rays, skates, and ghost sharks. Most cartilaginous fishes live in marine habitats, with a few species living in fresh water for part or all of their lives. The vast majority of present-day fishes belong to the clade Osteichthyes, which consists of approximately 30,000 species. Bony fishes (Osteichthyes) can be divided into two clades: Actinopterygii (ray-finned fishes, virtually all extant species) and Sarcopterygii (lobe-finned fishes, comprising fewer than 10 extant species, but form the sister group of the tetrapods).

29.3 Amphibians

As tetrapods, most amphibians are characterized by four well-developed limbs, although some species of salamanders and all caecilians are limbless. The most important characteristic of extant amphibians is a moist, permeable skin used for cutaneous respiration, although lungs are found in the adults of many species.

All amphibians are carnivores and possess many small teeth. The fossil record provides evidence of amphibian species, now extinct, that arose over 400 million years ago as the first tetrapods. Living Amphibia can be divided into three classes: salamanders (Urodela), frogs (Anura), and caecilians (Apoda). In the majority of amphibians, development occurs in two distinct stages: a gilled aquatic larval stage that metamorphoses into an adult stage, acquiring lungs and legs, and losing the tail in Anurans. A few species in all three clades bypass a free-living larval stage. Various levels of parental care are seen in the amphibians.

29.4 Reptiles

The amniotes are distinguished from amphibians by the presence of a terrestrially adapted egg protected by four extra-embryonic membranes. The amniotes include reptiles, birds, and mammals. The early amniotes diverged into two main lines soon after the first amniotes arose. The initial split was into synapsids (mammals) and sauropsids. Sauropsids can be further divided into anapsids and diapsids (crocodiles, dinosaurs, birds, and modern reptiles).

Reptiles are tetrapods that ancestrally had four limbs; however, a number of extant species have secondarily lost them or greatly reduced them over evolutionary time. For example, limbless reptiles (e.g., snakes) are classified as tetrapods, because they descended from ancestors with four limbs. One of the key adaptations that permitted reptiles to live on land was the development of scaly skin containing the protein keratin, which prevented water loss from the skin. Reptilia includes four living clades of nonavian organisms: Crocodilia (crocodiles and alligators), Sphenodontia (tuataras), Squamata (lizards and snakes), and Testudines (turtles). Currently, this classification is paraphyletic, leaving out the birds, which are now classified as avian reptiles in the class Reptilia.

29.5 Birds

Birds are the most speciose group of land vertebrates and display a number of adaptations related to their ability to fly, which were first present in their theropod (maniraptoran) ancestors. Birds are endothermic (and homeothermic), meaning they have a very high metabolism that produces a considerable amount of heat, as well as structures such as feathers that allow them to retain their own body heat. These adaptations are used to regulate their internal temperature, making it largely independent of ambient thermal conditions.

Birds have feathers, which allow for insulation and flight, as well as for mating and warning signals. Flight feathers have a broad and continuously curved vane that produces lift. Some birds have pneumatic bones containing air spaces that are sometimes connected to air sacs in the body cavity. Airflow through bird lungs travels in one direction, creating a counter-current gas exchange with the blood.

Birds are highly modified diapsids and belong to a group called the archosaurs. Within the archosaurs, birds are most likely evolved from theropod (maniraptoran) dinosaurs. One of the oldest known fossils (and best known) of a “dinosaur-bird” is that of Archaeopteryx, which is dated from the Jurassic period. Modern birds are now classified into three groups: Paleognathae, Galloanserae, and Neoaves.

29.6 Mammals

Mammals are vertebrates that possess hair and mammary glands. The mammalian integument includes various secretory glands, including sebaceous glands, eccrine glands, apocrine glands, and mammary glands.

Mammals are synapsids, meaning that they have a single opening in the skull behind the eye. Mammals probably evolved from therapsids in the late Triassic period, as the earliest known mammal fossils are from the early Jurassic period. A key characteristic of synapsids is endothermy, and most mammals are homeothermic.

There are three groups of mammals living today: monotremes, marsupials, and eutherians. Monotremes are unique among mammals as they lay eggs, rather than giving birth to young. Marsupials give birth to very immature young, which typically complete their development in a pouch. Eutherian mammals are sometimes called placental mammals, because all species possess a complex placenta that connects a fetus to the mother, allowing for gas, fluid, and nutrient exchange. All mammals nourish their young with milk, which is derived from modified sweat or sebaceous glands.

29.7 The Evolution of Primates

All primate species possess adaptations for climbing trees and probably descended from arboreal ancestors, although not all living species are arboreal. Other characteristics of primates are brains that are larger, relative to body size, than those of other mammals, claws that have been modified into flattened nails, typically only one young per pregnancy, stereoscopic vision, and a trend toward holding the body upright. Primates are divided into two groups: strepsirrhines, which include most prosimians, and haplorhines, which include simians. Monkeys evolved from prosimians during the Oligocene epoch. The simian line includes both platyrrhine and catarrhine branches. Apes evolved from catarrhines in Africa during the Miocene epoch. Apes are divided into the lesser apes and the greater apes. Hominins include those groups that gave rise to our own species, such as Australopithecus and H. erectus, and those groups that can be considered “cousins” of humans, such as Neanderthals and Denisovans. Fossil evidence shows that hominins at the time of Australopithecus were walking upright, the first evidence of bipedal hominins. A number of species, sometimes called archaic H. sapiens, evolved from H. erectus approximately 500,000 years ago. There is considerable debate about the origins of anatomically modern humans or H. sapiens sapiens, and the discussion will continue, as new evidence from fossil finds and genetic analysis emerges.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
Citation information

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.