Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology 2e

25.3 Bryophytes

Biology 2e25.3 Bryophytes

Menu
Table of contents
  1. Preface
  2. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  3. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 The Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reactions of Photosynthesis
      4. 8.3 Using Light Energy to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  4. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkage
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 16 Gene Expression
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcription Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
  5. Evolutionary Processes
    1. 18 Evolution and the Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Speciation Rates
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  6. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infections and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes: Bacteria and Archaea
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 23 Protists
      1. Introduction
      2. 23.1 Eukaryotic Origins
      3. 23.2 Characteristics of Protists
      4. 23.3 Groups of Protists
      5. 23.4 Ecology of Protists
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 24 Fungi
      1. Introduction
      2. 24.1 Characteristics of Fungi
      3. 24.2 Classifications of Fungi
      4. 24.3 Ecology of Fungi
      5. 24.4 Fungal Parasites and Pathogens
      6. 24.5 Importance of Fungi in Human Life
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 25 Seedless Plants
      1. Introduction
      2. 25.1 Early Plant Life
      3. 25.2 Green Algae: Precursors of Land Plants
      4. 25.3 Bryophytes
      5. 25.4 Seedless Vascular Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    6. 26 Seed Plants
      1. Introduction
      2. 26.1 Evolution of Seed Plants
      3. 26.2 Gymnosperms
      4. 26.3 Angiosperms
      5. 26.4 The Role of Seed Plants
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 27 Introduction to Animal Diversity
      1. Introduction
      2. 27.1 Features of the Animal Kingdom
      3. 27.2 Features Used to Classify Animals
      4. 27.3 Animal Phylogeny
      5. 27.4 The Evolutionary History of the Animal Kingdom
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 28 Invertebrates
      1. Introduction
      2. 28.1 Phylum Porifera
      3. 28.2 Phylum Cnidaria
      4. 28.3 Superphylum Lophotrochozoa: Flatworms, Rotifers, and Nemerteans
      5. 28.4 Superphylum Lophotrochozoa: Molluscs and Annelids
      6. 28.5 Superphylum Ecdysozoa: Nematodes and Tardigrades
      7. 28.6 Superphylum Ecdysozoa: Arthropods
      8. 28.7 Superphylum Deuterostomia
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    9. 29 Vertebrates
      1. Introduction
      2. 29.1 Chordates
      3. 29.2 Fishes
      4. 29.3 Amphibians
      5. 29.4 Reptiles
      6. 29.5 Birds
      7. 29.6 Mammals
      8. 29.7 The Evolution of Primates
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  7. Plant Structure and Function
    1. 30 Plant Form and Physiology
      1. Introduction
      2. 30.1 The Plant Body
      3. 30.2 Stems
      4. 30.3 Roots
      5. 30.4 Leaves
      6. 30.5 Transport of Water and Solutes in Plants
      7. 30.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 31 Soil and Plant Nutrition
      1. Introduction
      2. 31.1 Nutritional Requirements of Plants
      3. 31.2 The Soil
      4. 31.3 Nutritional Adaptations of Plants
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 32 Plant Reproduction
      1. Introduction
      2. 32.1 Reproductive Development and Structure
      3. 32.2 Pollination and Fertilization
      4. 32.3 Asexual Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. Animal Structure and Function
    1. 33 The Animal Body: Basic Form and Function
      1. Introduction
      2. 33.1 Animal Form and Function
      3. 33.2 Animal Primary Tissues
      4. 33.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 34 Animal Nutrition and the Digestive System
      1. Introduction
      2. 34.1 Digestive Systems
      3. 34.2 Nutrition and Energy Production
      4. 34.3 Digestive System Processes
      5. 34.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 35 The Nervous System
      1. Introduction
      2. 35.1 Neurons and Glial Cells
      3. 35.2 How Neurons Communicate
      4. 35.3 The Central Nervous System
      5. 35.4 The Peripheral Nervous System
      6. 35.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 36 Sensory Systems
      1. Introduction
      2. 36.1 Sensory Processes
      3. 36.2 Somatosensation
      4. 36.3 Taste and Smell
      5. 36.4 Hearing and Vestibular Sensation
      6. 36.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 37 The Endocrine System
      1. Introduction
      2. 37.1 Types of Hormones
      3. 37.2 How Hormones Work
      4. 37.3 Regulation of Body Processes
      5. 37.4 Regulation of Hormone Production
      6. 37.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 38 The Musculoskeletal System
      1. Introduction
      2. 38.1 Types of Skeletal Systems
      3. 38.2 Bone
      4. 38.3 Joints and Skeletal Movement
      5. 38.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    7. 39 The Respiratory System
      1. Introduction
      2. 39.1 Systems of Gas Exchange
      3. 39.2 Gas Exchange across Respiratory Surfaces
      4. 39.3 Breathing
      5. 39.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    8. 40 The Circulatory System
      1. Introduction
      2. 40.1 Overview of the Circulatory System
      3. 40.2 Components of the Blood
      4. 40.3 Mammalian Heart and Blood Vessels
      5. 40.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    9. 41 Osmotic Regulation and Excretion
      1. Introduction
      2. 41.1 Osmoregulation and Osmotic Balance
      3. 41.2 The Kidneys and Osmoregulatory Organs
      4. 41.3 Excretion Systems
      5. 41.4 Nitrogenous Wastes
      6. 41.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    10. 42 The Immune System
      1. Introduction
      2. 42.1 Innate Immune Response
      3. 42.2 Adaptive Immune Response
      4. 42.3 Antibodies
      5. 42.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    11. 43 Animal Reproduction and Development
      1. Introduction
      2. 43.1 Reproduction Methods
      3. 43.2 Fertilization
      4. 43.3 Human Reproductive Anatomy and Gametogenesis
      5. 43.4 Hormonal Control of Human Reproduction
      6. 43.5 Human Pregnancy and Birth
      7. 43.6 Fertilization and Early Embryonic Development
      8. 43.7 Organogenesis and Vertebrate Formation
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
  9. Ecology
    1. 44 Ecology and the Biosphere
      1. Introduction
      2. 44.1 The Scope of Ecology
      3. 44.2 Biogeography
      4. 44.3 Terrestrial Biomes
      5. 44.4 Aquatic Biomes
      6. 44.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 45 Population and Community Ecology
      1. Introduction
      2. 45.1 Population Demography
      3. 45.2 Life Histories and Natural Selection
      4. 45.3 Environmental Limits to Population Growth
      5. 45.4 Population Dynamics and Regulation
      6. 45.5 Human Population Growth
      7. 45.6 Community Ecology
      8. 45.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Visual Connection Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 46 Ecosystems
      1. Introduction
      2. 46.1 Ecology of Ecosystems
      3. 46.2 Energy Flow through Ecosystems
      4. 46.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 47 Conservation Biology and Biodiversity
      1. Introduction
      2. 47.1 The Biodiversity Crisis
      3. 47.2 The Importance of Biodiversity to Human Life
      4. 47.3 Threats to Biodiversity
      5. 47.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index

Learning Objectives

By the end of this section, you will be able to do the following:

  • Identify the main characteristics of bryophytes
  • Describe the distinguishing traits of liverworts, hornworts, and mosses
  • Chart the development of land adaptations in the bryophytes
  • Describe the events in the bryophyte lifecycle

Bryophytes are the closest extant relatives of early terrestrial plants. The first bryophytes (liverworts) most likely appeared in the Ordovician period, about 450 million years ago. Because they lack lignin and other resistant structures, the likelihood of bryophytes forming fossils is rather small. Some spores protected by sporopollenin have survived and are attributed to early bryophytes. By the Silurian period (435 MYA), however, vascular plants had spread through the continents. This compelling fact is used as evidence that non-vascular plants must have preceded the Silurian period.

More than 25,000 species of bryophytes thrive in mostly damp habitats, although some live in deserts. They constitute the major flora of inhospitable environments like the tundra, where their small size and tolerance to desiccation offer distinct advantages. They generally lack lignin and do not have actual tracheids (xylem cells specialized for water conduction). Rather, water and nutrients circulate inside specialized conducting cells. Although the term non-tracheophyte is more accurate, bryophytes are commonly called non-vascular plants.

In a bryophyte, all the conspicuous vegetative organs—including the photosynthetic leaf-like structures, the thallus (“plant body”), stem, and the rhizoid that anchors the plant to its substrate—belong to the haploid organism or gametophyte. The male gametes formed by bryophytes swim with a flagellum, so fertilization is dependent on the presence of water. The bryophyte embryo also remains attached to the parent plant, which protects and nourishes it. The sporophyte that develops from the embryo is barely noticeable. The sporangium—the multicellular sexual reproductive structure in which meiosis produces haploid spores—is present in bryophytes and absent in the majority of algae. This is also a characteristic of land plants.

The bryophytes are divided into three phyla: the liverworts or Marchantiophyta, the hornworts or Anthocerotophyta, and the mosses or true Bryophyta.

Liverworts

Liverworts (Marchantiophyta) are currently classified as the plants most closely related to the ancestor of vascular plants that adapted to terrestrial environments. In fact, liverworts have colonized every terrestrial habitat on Earth and diversified to more than 7000 existing species (Figure 25.9). Lobate liverworts form a flat thallus, with lobes that have a vague resemblance to the lobes of the liver (Figure 25.10), which accounts for the name given to the phylum. Leafy liverworts have tiny leaflike structures attached to a stalk. Several leafy liverworts are shown in Figure 25.9.

 The illustration shows a variety of liverworts, which all share a branched, leafy structure.
Figure 25.9 Liverworts. This 1904 drawing shows the variety of forms of Marchantiophyta.
Photo shows a liverwort with lettuce-like leaves. The gemma cup, described in the paragraph and subsequent life-cycle diagram, is highlighted.
Figure 25.10 Liverwort gametophyte. A liverwort, Lunularia cruciata, displays its lobate, flat thallus. The organism in the photograph is in the gametophyte stage, but has not yet produced gametangia. Lunularia gametophytes produce crescent-shaped gemmae (circled), which contain asexual spores. The tiny white dots on the surface of the thallus are air pores.

Openings in the thallus that allow the movement of gases may be observed in liverworts (Figure 25.10). However, these are not stomata, because they do not actively open and close by the action of guard cells. Instead, the thallus takes up water over its entire surface and has no cuticle to prevent desiccation, which explains their preferred wet habitats. Figure 25.11 represents the lifecycle of a lobate liverwort. Haploid spores germinate into flattened thalli attached to the substrate by thin, single-celled filaments. Stalk-like structures (gametophores) grow from the thallus and carry male and female gametangia, which may develop on separate, individual plants, or on the same plant, depending on the species. Flagellated male gametes develop within antheridia (male gametangia). The female gametes develop within archegonia (female gametangia). Once released, the male gametes swim with the aid of their flagella to an archegonium, and fertilization ensues. The zygote grows into a small sporophyte still contained in the archegonium. The diploid zygote will give rise, by meiosis, to the next generation of haploid spores, which can be disseminated by wind or water. In many liverworts, spore dispersal is facilitated by elaters—long single cells that suddenly change shape as they dry out and throw adjacent spores out of the spore capsule. Liverwort plants can also reproduce asexually, by the breaking of “branches” or the spreading of leaf fragments called gemmae. In this latter type of reproduction, the gemmae—small, intact, complete pieces of plant that are produced in a cup on the surface of the thallus (shown in Figure 25.11 and Figure 25.12)—are splashed out of the cup by raindrops. The gemmae then land nearby and develop into gametophytes.

 The liverwort has a flat, leaf-like structure haploid (1n) called a thallus. Root-like rhizoids grow from the bottom of the thallus. A slender stalk extends from the thallus, and an archegonial head sits at its top. The archegonial head has fronds, like a palm tree. The underside of the archegonial head contains protrusions called archegonia, which house the eggs. Sperm enter through a hole in the bottom of the archegonium and fertilize the egg to produce a diploid (2n) embryo. The embryo grows into a stalk. Meiosis produces haploid (1n) spores in a sac at the tip of the stalk . The sac bursts open, releasing the spores. The spores sprout, producing a new thallus and rhizoids.
Figure 25.11 Reproductive cycle of liverworts. The life cycle of a typical lobate liverwort is shown. This image shows a liverwort in which antheridia and archegonia are produced on separate gametophytes. (credit: modification of work by Mariana Ruiz Villareal)

Hornworts

The defining characteristic of the hornworts (Anthocerotophyta) is the narrow, pipe-like sporophyte. Hornworts have colonized a variety of habitats on land, although they are never far from a source of moisture. The short, blue-green gametophyte is the dominant phase of the life cycle of a hornwort. The sporophytes emerge from the parent gametophyte and continue to grow throughout the life of the plant (Figure 25.12).

 The base of the hornwort plant, called the thallus, has a wrinkled, leaf-like appearance. The sporophytes are a cluster of slender green stalks with brown tips grows from this wrinkled mass.
Figure 25.12 Hornwort sporophytes. Hornworts grow a tall and slender sporophyte. (credit: modification of work by Jason Hollinger)

Stomata (air pores that can be opened and closed) appear in the hornworts and are abundant on the sporophyte. Photosynthetic cells in the thallus each contain a single chloroplast. Meristem cells at the base of the plant keep dividing and adding to the height of the sporophyte. This growth pattern is unique to the hornworts. Many hornworts establish symbiotic relationships with cyanobacteria that fix nitrogen from the environment.

The lifecycle of hornworts (Figure 25.13) follows the general pattern of alternation of generations. The gametophytes grow as flat thalli on the soil with embedded male and female gametangia. Flagellated sperm swim to the archegonia and fertilize eggs. The zygote develops into a long and slender sporophyte that eventually splits open down the side, releasing spores. Thin branched cells called pseudoelaters surround the spores and help propel them farther in the environment. The haploid spores germinate and give rise to the next generation of gametophytes.

In hornworts, the gametophyte is a haploid 1 n leaf-like structure with slender stalks called rhizoids underneath. Male sex organs called antheridia produce sperm, and female sex organs called archegonia produce eggs. Both male and female sex organs form just beneath the surface of the gametophyte, and are exposed to the surface as the organs mature. The sperm swims to the egg or is propelled by water. When the egg is fertilized, the embryo grows into a hollow tube-like structure called a sporophyte. Meiosis inside the sporophyte produces haploid 1 n spores. The spores are ejected from the top of the tube. They grow into new gametophytes, completing the cycle.
Figure 25.13 Reproductive cycle of hornworts. The alternation of generation in hornworts is shown. (credit: modification of work by “Smith609”/Wikimedia Commons based on original work by Mariana Ruiz Villareal)

Mosses

The mosses are the most numerous of the non-vascular plants. More than 10,000 species of mosses have been catalogued. Their habitats vary from the tundra, where they are the main vegetation, to the understory of tropical forests. In the tundra, the mosses’ shallow rhizoids allow them to fasten to a substrate without penetrating the frozen soil. Mosses slow down erosion, store moisture and soil nutrients, and provide shelter for small animals as well as food for larger herbivores, such as the musk ox. Mosses are very sensitive to air pollution and are used to monitor air quality. They are also sensitive to copper salts, so these salts are a common ingredient of compounds marketed to eliminate mosses from lawns.

Mosses form diminutive gametophytes, which are the dominant phase of the lifecycle. Green, flat structures with a simple midrib—resembling true leaves, but lacking stomata and vascular tissue—are attached in a spiral to a central stalk. Mosses have stomata only on the sporophyte. Water and nutrients are absorbed directly through the leaflike structures of the gametophyte. Some mosses have small branches. A primitive conductive system that carries water and nutrients runs up the gametophyte's stalk, but does not extend into the leaves. Additionally, mosses are anchored to the substrate—whether it is soil, rock, or roof tiles—by multicellular rhizoids, precursors of roots. They originate from the base of the gametophyte, but are not the major route for the absorption of water and minerals. The lack of a true root system explains why it is so easy to rip moss mats from a tree trunk. The mosses therefore occupy a threshold position between other bryophytes and the vascular plants.

The moss lifecycle follows the pattern of alternation of generations as shown in Figure 25.14. The most familiar structure is the haploid gametophyte, which germinates from a haploid spore and forms first a protonema—usually, a tangle of single-celled filaments that hug the ground. Cells akin to an apical meristem actively divide and give rise to a gametophore, consisting of a photosynthetic stem and foliage-like structures. Male and female gametangia develop at the tip of separate gametophores. The antheridia (male organs) produce many sperm, whereas the archegonia (the female organs) each form a single egg at the base (venter) of a flask-shaped structure. The archegonium produces attractant substances and at fertilization, the sperm swims down the neck to the venter and unites with the egg inside the archegonium. The zygote, protected by the archegonium, divides and grows into a sporophyte, still attached by its foot to the gametophyte.

Visual Connection

 In mosses, the mature haploid (1n) gametophyte is a slender, nonvascular stem with fuzzy, non-vascular leaves. Root-like rhizoids grow from the bottom. Male antheridia and female archegonia grow at the tip of the stem. Sperm fertilize the eggs, producing a diploid (2n) zygote inside a vase-like structure called a venter inside the archegonial head. The embryo grows into a sporophyte that projects like a flower from the vase. The sporophyte undergoes meiosis to produce haploid (1n) spores that grow to produce mature gametophytes, completing the cycle.
Figure 25.14 Reproductive cycle of mosses. This illustration shows the life cycle of mosses. (credit: modification of work by Mariana Ruiz Villareal)

Which of the following statements about the moss life cycle is false?

  1. The mature gametophyte is haploid.
  2. The sporophyte produces haploid spores.
  3. The calyptra buds to form a mature gametophyte.
  4. The zygote is housed in the venter.

The moss sporophyte is dependent on the gametophyte for nutrients. The slender seta (plural, setae), as seen in Figure 25.15, contains tubular cells that transfer nutrients from the base of the sporophyte (the foot) to the sporangium or capsule.

 In the photo, setae appear as long, slender, bent stems with oval-shaped capsules at the tips.
Figure 25.15 Moss sporophyte. This photograph shows the long slender stems, called setae, connected to capsules of the moss Thamnobryum alopecurum. The operculum and remnants of the calyptra are visible in some capsules. (credit: modification of work by Hermann Schachner)

Spore mother cells in the sporangium undergo meiosis to produce haploid spores. The sporophyte has several features that protect the developing spores and aid in their dispersal. The calyptra, derived from the walls of the archegonium, covers the sporangium. A structure called the operculum is at the tip of the spore capsule. The calyptra and operculum fall off when the spores are ready for dispersal. The peristome, tissue around the mouth of the capsule, is made of triangular, close-fitting units like little “teeth.” The peristome opens and closes, depending on moisture levels, and periodically releases spores.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
Citation information

© Jul 7, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.