Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology 2e


Biology 2eIntroduction

Image A shows two conjoined cells forming a dumbbell shape; the fertilization envelope has been removed so that the mesh-like outer layer can be seen. Image B shows the sea urchin embryo when it has divided into 16 conjoined cells; the overall shape is rounder than in image A. Image C shows a water melon sea urchin which appears as a peach-colored ball covered in white protruding spines.
Figure 10.1 A sea urchin begins life as a single diploid cell (zygote) that (a) divides through cell division to form two genetically identical daughter cells, visible here through scanning electron microscopy (SEM). After four rounds of cell division, (b) there are 16 cells, as seen in this SEM image. After many rounds of cell division, the individual develops into a complex, multicellular organism, as seen in this (c) mature sea urchin. (credit a: modification of work by Evelyn Spiegel, Louisa Howard; credit b: modification of work by Evelyn Spiegel, Louisa Howard; credit c: modification of work by Marco Busdraghi; scale-bar data from Matt Russell)

A human, like every sexually reproducing organism, begins life as a fertilized egg (embryo) or zygote. In our species, billions of cell divisions subsequently must occur in a controlled manner in order to produce a complex, multicellular human comprising trillions of cells. Thus, the original single-celled zygote is literally the ancestor of all cells in the body. However, once a human is fully grown, cell reproduction is still necessary to repair and regenerate tissues, and sometimes to increase our size! In fact, all multicellular organisms use cell division for growth and the maintenance and repair of cells and tissues. Cell division is closely regulated, and the occasional failure of this regulation can have life-threatening consequences. Single-celled organisms may also use cell division as their method of reproduction.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Apr 26, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.