Skip to Content
OpenStax Logo
Astronomy

4.6 Ocean Tides and the Moon

Astronomy4.6 Ocean Tides and the Moon
Buy book
  1. Preface
  2. 1 Science and the Universe: A Brief Tour
    1. Introduction
    2. 1.1 The Nature of Astronomy
    3. 1.2 The Nature of Science
    4. 1.3 The Laws of Nature
    5. 1.4 Numbers in Astronomy
    6. 1.5 Consequences of Light Travel Time
    7. 1.6 A Tour of the Universe
    8. 1.7 The Universe on the Large Scale
    9. 1.8 The Universe of the Very Small
    10. 1.9 A Conclusion and a Beginning
    11. For Further Exploration
  3. 2 Observing the Sky: The Birth of Astronomy
    1. Thinking Ahead
    2. 2.1 The Sky Above
    3. 2.2 Ancient Astronomy
    4. 2.3 Astrology and Astronomy
    5. 2.4 The Birth of Modern Astronomy
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  4. 3 Orbits and Gravity
    1. Thinking Ahead
    2. 3.1 The Laws of Planetary Motion
    3. 3.2 Newton’s Great Synthesis
    4. 3.3 Newton’s Universal Law of Gravitation
    5. 3.4 Orbits in the Solar System
    6. 3.5 Motions of Satellites and Spacecraft
    7. 3.6 Gravity with More Than Two Bodies
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  5. 4 Earth, Moon, and Sky
    1. Thinking Ahead
    2. 4.1 Earth and Sky
    3. 4.2 The Seasons
    4. 4.3 Keeping Time
    5. 4.4 The Calendar
    6. 4.5 Phases and Motions of the Moon
    7. 4.6 Ocean Tides and the Moon
    8. 4.7 Eclipses of the Sun and Moon
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  6. 5 Radiation and Spectra
    1. Thinking Ahead
    2. 5.1 The Behavior of Light
    3. 5.2 The Electromagnetic Spectrum
    4. 5.3 Spectroscopy in Astronomy
    5. 5.4 The Structure of the Atom
    6. 5.5 Formation of Spectral Lines
    7. 5.6 The Doppler Effect
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  7. 6 Astronomical Instruments
    1. Thinking Ahead
    2. 6.1 Telescopes
    3. 6.2 Telescopes Today
    4. 6.3 Visible-Light Detectors and Instruments
    5. 6.4 Radio Telescopes
    6. 6.5 Observations outside Earth’s Atmosphere
    7. 6.6 The Future of Large Telescopes
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  8. 7 Other Worlds: An Introduction to the Solar System
    1. Thinking Ahead
    2. 7.1 Overview of Our Planetary System
    3. 7.2 Composition and Structure of Planets
    4. 7.3 Dating Planetary Surfaces
    5. 7.4 Origin of the Solar System
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  9. 8 Earth as a Planet
    1. Thinking Ahead
    2. 8.1 The Global Perspective
    3. 8.2 Earth’s Crust
    4. 8.3 Earth’s Atmosphere
    5. 8.4 Life, Chemical Evolution, and Climate Change
    6. 8.5 Cosmic Influences on the Evolution of Earth
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  10. 9 Cratered Worlds
    1. Thinking Ahead
    2. 9.1 General Properties of the Moon
    3. 9.2 The Lunar Surface
    4. 9.3 Impact Craters
    5. 9.4 The Origin of the Moon
    6. 9.5 Mercury
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  11. 10 Earthlike Planets: Venus and Mars
    1. Thinking Ahead
    2. 10.1 The Nearest Planets: An Overview
    3. 10.2 The Geology of Venus
    4. 10.3 The Massive Atmosphere of Venus
    5. 10.4 The Geology of Mars
    6. 10.5 Water and Life on Mars
    7. 10.6 Divergent Planetary Evolution
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  12. 11 The Giant Planets
    1. Thinking Ahead
    2. 11.1 Exploring the Outer Planets
    3. 11.2 The Giant Planets
    4. 11.3 Atmospheres of the Giant Planets
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  13. 12 Rings, Moons, and Pluto
    1. Thinking Ahead
    2. 12.1 Ring and Moon Systems Introduced
    3. 12.2 The Galilean Moons of Jupiter
    4. 12.3 Titan and Triton
    5. 12.4 Pluto and Charon
    6. 12.5 Planetary Rings
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  14. 13 Comets and Asteroids: Debris of the Solar System
    1. Thinking Ahead
    2. 13.1 Asteroids
    3. 13.2 Asteroids and Planetary Defense
    4. 13.3 The “Long-Haired” Comets
    5. 13.4 The Origin and Fate of Comets and Related Objects
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  15. 14 Cosmic Samples and the Origin of the Solar System
    1. Thinking Ahead
    2. 14.1 Meteors
    3. 14.2 Meteorites: Stones from Heaven
    4. 14.3 Formation of the Solar System
    5. 14.4 Comparison with Other Planetary Systems
    6. 14.5 Planetary Evolution
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  16. 15 The Sun: A Garden-Variety Star
    1. Thinking Ahead
    2. 15.1 The Structure and Composition of the Sun
    3. 15.2 The Solar Cycle
    4. 15.3 Solar Activity above the Photosphere
    5. 15.4 Space Weather
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  17. 16 The Sun: A Nuclear Powerhouse
    1. Thinking Ahead
    2. 16.1 Sources of Sunshine: Thermal and Gravitational Energy
    3. 16.2 Mass, Energy, and the Theory of Relativity
    4. 16.3 The Solar Interior: Theory
    5. 16.4 The Solar Interior: Observations
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  18. 17 Analyzing Starlight
    1. Thinking Ahead
    2. 17.1 The Brightness of Stars
    3. 17.2 Colors of Stars
    4. 17.3 The Spectra of Stars (and Brown Dwarfs)
    5. 17.4 Using Spectra to Measure Stellar Radius, Composition, and Motion
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  19. 18 The Stars: A Celestial Census
    1. Thinking Ahead
    2. 18.1 A Stellar Census
    3. 18.2 Measuring Stellar Masses
    4. 18.3 Diameters of Stars
    5. 18.4 The H–R Diagram
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  20. 19 Celestial Distances
    1. Thinking Ahead
    2. 19.1 Fundamental Units of Distance
    3. 19.2 Surveying the Stars
    4. 19.3 Variable Stars: One Key to Cosmic Distances
    5. 19.4 The H–R Diagram and Cosmic Distances
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  21. 20 Between the Stars: Gas and Dust in Space
    1. Thinking Ahead
    2. 20.1 The Interstellar Medium
    3. 20.2 Interstellar Gas
    4. 20.3 Cosmic Dust
    5. 20.4 Cosmic Rays
    6. 20.5 The Life Cycle of Cosmic Material
    7. 20.6 Interstellar Matter around the Sun
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  22. 21 The Birth of Stars and the Discovery of Planets outside the Solar System
    1. Thinking Ahead
    2. 21.1 Star Formation
    3. 21.2 The H–R Diagram and the Study of Stellar Evolution
    4. 21.3 Evidence That Planets Form around Other Stars
    5. 21.4 Planets beyond the Solar System: Search and Discovery
    6. 21.5 Exoplanets Everywhere: What We Are Learning
    7. 21.6 New Perspectives on Planet Formation
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  23. 22 Stars from Adolescence to Old Age
    1. Thinking Ahead
    2. 22.1 Evolution from the Main Sequence to Red Giants
    3. 22.2 Star Clusters
    4. 22.3 Checking Out the Theory
    5. 22.4 Further Evolution of Stars
    6. 22.5 The Evolution of More Massive Stars
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  24. 23 The Death of Stars
    1. Thinking Ahead
    2. 23.1 The Death of Low-Mass Stars
    3. 23.2 Evolution of Massive Stars: An Explosive Finish
    4. 23.3 Supernova Observations
    5. 23.4 Pulsars and the Discovery of Neutron Stars
    6. 23.5 The Evolution of Binary Star Systems
    7. 23.6 The Mystery of the Gamma-Ray Bursts
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  25. 24 Black Holes and Curved Spacetime
    1. Thinking Ahead
    2. 24.1 Introducing General Relativity
    3. 24.2 Spacetime and Gravity
    4. 24.3 Tests of General Relativity
    5. 24.4 Time in General Relativity
    6. 24.5 Black Holes
    7. 24.6 Evidence for Black Holes
    8. 24.7 Gravitational Wave Astronomy
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  26. 25 The Milky Way Galaxy
    1. Thinking Ahead
    2. 25.1 The Architecture of the Galaxy
    3. 25.2 Spiral Structure
    4. 25.3 The Mass of the Galaxy
    5. 25.4 The Center of the Galaxy
    6. 25.5 Stellar Populations in the Galaxy
    7. 25.6 The Formation of the Galaxy
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  27. 26 Galaxies
    1. Thinking Ahead
    2. 26.1 The Discovery of Galaxies
    3. 26.2 Types of Galaxies
    4. 26.3 Properties of Galaxies
    5. 26.4 The Extragalactic Distance Scale
    6. 26.5 The Expanding Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  28. 27 Active Galaxies, Quasars, and Supermassive Black Holes
    1. Thinking Ahead
    2. 27.1 Quasars
    3. 27.2 Supermassive Black Holes: What Quasars Really Are
    4. 27.3 Quasars as Probes of Evolution in the Universe
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  29. 28 The Evolution and Distribution of Galaxies
    1. Thinking Ahead
    2. 28.1 Observations of Distant Galaxies
    3. 28.2 Galaxy Mergers and Active Galactic Nuclei
    4. 28.3 The Distribution of Galaxies in Space
    5. 28.4 The Challenge of Dark Matter
    6. 28.5 The Formation and Evolution of Galaxies and Structure in the Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  30. 29 The Big Bang
    1. Thinking Ahead
    2. 29.1 The Age of the Universe
    3. 29.2 A Model of the Universe
    4. 29.3 The Beginning of the Universe
    5. 29.4 The Cosmic Microwave Background
    6. 29.5 What Is the Universe Really Made Of?
    7. 29.6 The Inflationary Universe
    8. 29.7 The Anthropic Principle
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  31. 30 Life in the Universe
    1. Thinking Ahead
    2. 30.1 The Cosmic Context for Life
    3. 30.2 Astrobiology
    4. 30.3 Searching for Life beyond Earth
    5. 30.4 The Search for Extraterrestrial Intelligence
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  32. A | How to Study for an Introductory Astronomy Class
  33. B | Astronomy Websites, Images, and Apps
  34. C | Scientific Notation
  35. D | Units Used in Science
  36. E | Some Useful Constants for Astronomy
  37. F | Physical and Orbital Data for the Planets
  38. G | Selected Moons of the Planets
  39. H | Future Total Eclipses
  40. I | The Nearest Stars, Brown Dwarfs, and White Dwarfs
  41. J | The Brightest Twenty Stars
  42. K | The Chemical Elements
  43. L | The Constellations
  44. M | Star Chart and Sky Event Resources
  45. Index

Learning Objectives

By the end of this section, you will be able to:

  • Describe what causes tides on Earth
  • Explain why the amplitude of tides changes during the course of a month

Anyone living near the sea is familiar with the twice-daily rising and falling of the tides. Early in history, it was clear that tides must be related to the Moon because the daily delay in high tide is the same as the daily delay in the Moon’s rising. A satisfactory explanation of the tides, however, awaited the theory of gravity, supplied by Newton.

The Pull of the Moon on Earth

The gravitational forces exerted by the Moon at several points on Earth are illustrated in Figure 4.16. These forces differ slightly from one another because Earth is not a point, but has a certain size: all parts are not equally distant from the Moon, nor are they all in exactly the same direction from the Moon. Moreover, Earth is not perfectly rigid. As a result, the differences among the forces of the Moon’s attraction on different parts of Earth (called differential forces) cause Earth to distort slightly. The side of Earth nearest the Moon is attracted toward the Moon more strongly than is the center of Earth, which in turn is attracted more strongly than is the side opposite the Moon. Thus, the differential forces tend to stretch Earth slightly into a prolate spheroid (a football shape), with its long diameter pointed toward the Moon.

The Gravitational Effect of Our Moon. The Earth is illustrated at left with six red arrows at various locations pointing toward the Moon, which is illustrated on the right. The arrows on the left side of Earth are the shortest as this part of Earth is furthest from the Moon. The arrows at the center of the Earth are somewhat longer than the arrows on the left. On the side of the Earth closest to the Moon, the arrows are longest.
Figure 4.16 Pull of the Moon. The Moon’s differential attraction is shown on different parts of Earth. (Note that the differences have been exaggerated for educational purposes.)

If Earth were made of water, it would distort until the Moon’s differential forces over different parts of its surface came into balance with Earth’s own gravitational forces pulling it together. Calculations show that in this case, Earth would distort from a sphere by amounts ranging up to nearly 1 meter. Measurements of the actual deformation of Earth show that the solid Earth does distort, but only about one-third as much as water would, because of the greater rigidity of Earth’s interior.

Because the tidal distortion of the solid Earth amounts—at its greatest—to only about 20 centimeters, Earth does not distort enough to balance the Moon’s differential forces with its own gravity. Hence, objects at Earth’s surface experience tiny horizontal tugs, tending to make them slide about. These tide-raising forces are too insignificant to affect solid objects like astronomy students or rocks in Earth’s crust, but they do affect the waters in the oceans.

The Formation of Tides

The tide-raising forces, acting over a number of hours, produce motions of the water that result in measurable tidal bulges in the oceans. Water on the side of Earth facing the Moon flows toward it, with the greatest depths roughly at the point below the Moon. On the side of Earth opposite the Moon, water also flows to produce a tidal bulge (Figure 4.17).

Tidal Bulges. In this illustration, the Earth is drawn as a dark blue disk within a light blue ellipse representing the oceans. The perimeter of the ellipse comes closest to the Earth’s surface at the poles and is furthest away at the equator. Red arrows are drawn showing the flow of water from the poles to the equatorial bulges. An arrow points from the right-hand bulge toward the right and is labeled “To Moon”.
Figure 4.17 Tidal Bulges in an “Ideal” Ocean. Differences in gravity cause tidal forces that push water in the direction of tidal bulges on Earth.

Note that the tidal bulges in the oceans do not result from the Moon’s compressing or expanding the water, nor from the Moon’s lifting the water “away from Earth.” Rather, they result from an actual flow of water over Earth’s surface toward the two regions below and opposite the Moon, causing the water to pile up to greater depths at those places (Figure 4.18).

Photographs of High and Low Tides in the Bay of Fundy. At left high tide is shown, with the bay full of water. At right is low tide, no water is seen and the boats are all lying on the exposed ground.
Figure 4.18 High and Low Tides. This is a side-by-side comparison of the Bay of Fundy in Canada at high and low tides. (credit a, b: modification of work by Dylan Kereluk)

In the idealized (and, as we shall see, oversimplified) model just described, the height of the tides would be only a few feet. The rotation of Earth would carry an observer at any given place alternately into regions of deeper and shallower water. An observer being carried toward the regions under or opposite the Moon, where the water was deepest, would say, “The tide is coming in”; when carried away from those regions, the observer would say, “The tide is going out.” During a day, the observer would be carried through two tidal bulges (one on each side of Earth) and so would experience two high tides and two low tides.

The Sun also produces tides on Earth, although it is less than half as effective as the Moon at tide raising. The actual tides we experience are a combination of the larger effect of the Moon and the smaller effect of the Sun. When the Sun and Moon are lined up (at new moon or full moon), the tides produced reinforce each other and so are greater than normal (Figure 4.19). These are called spring tides (the name is connected not to the season but to the idea that higher tides “spring up”). Spring tides are approximately the same, whether the Sun and Moon are on the same or opposite sides of Earth, because tidal bulges occur on both sides. When the Moon is at first quarter or last quarter (at right angles to the Sun’s direction), the tides produced by the Sun partially cancel the tides of the Moon, making them lower than usual. These are called neap tides.

Tides Caused by Different Alignments of the Sun and Moon. In this illustration, the Earth is drawn as a dark blue disk within a light blue ellipse representing the oceans. In panel (a), at left and labeled “Spring tide”, the perimeter of the ellipse furthest from the Earth’s surface at the points “below” the Sun and Moon. The direction to the Moon is indicated with an arrow pointing left, and the Sun with an arrow pointing to the right. In panel (b), at right and labeled “Neap tide”, the perimeter of the ellipse comes closest to the Earth’s surface at the point “below” the Sun indicated with an arrow pointing right. The ellipse is furthest from the surface at the point below the Moon, indicated with an arrow pointing upward.
Figure 4.19 Tides Caused by Different Alignments of the Sun and Moon. (a) In spring tides, the Sun’s and Moon’s pulls reinforce each other. (b) In neap tides, the Sun and the Moon pull at right angles to each other and the resulting tides are lower than usual.

The “simple” theory of tides, described in the preceding paragraphs, would be sufficient if Earth rotated very slowly and were completely surrounded by very deep oceans. However, the presence of land masses stopping the flow of water, the friction in the oceans and between oceans and the ocean floors, the rotation of Earth, the wind, the variable depth of the ocean, and other factors all complicate the picture. This is why, in the real world, some places have very small tides while in other places huge tides become tourist attractions. If you have been in such places, you may know that “tide tables” need to be computed and published for each location; one set of tide predictions doesn’t work for the whole planet. In this introductory chapter, we won’t delve further into these complexities.

Voyagers in Astronomy

George Darwin and the Slowing of Earth

The rubbing of water over the face of Earth involves an enormous amount of energy. Over long periods of time, the friction of the tides is slowing down the rotation of Earth. Our day gets longer by about 0.002 second each century. That seems very small, but such tiny changes can add up over millions and billions of years.

Although Earth’s spin is slowing down, the angular momentum (see Orbits and Gravity) in a system such as the Earth-Moon system cannot change. Thus, some other spin motion must speed up to take the extra angular momentum. The details of what happens were worked out over a century ago by George Darwin, the son of naturalist Charles Darwin. George Darwin (see Figure 4.20) had a strong interest in science but studied law for six years and was admitted to the bar. However, he never practiced law, returning to science instead and eventually becoming a professor at Cambridge University. He was a protégé of Lord Kelvin, one of the great physicists of the nineteenth century, and he became interested in the long-term evolution of the solar system. He specialized in making detailed (and difficult) mathematical calculations of how orbits and motions change over geologic time.

Photograph of George Darwin.
Figure 4.20 George Darwin (1845–1912). George Darwin is best known for studying Earth’s spin in relation to angular momentum.

What Darwin calculated for the Earth-Moon system was that the Moon will slowly spiral outward, away from Earth. As it moves farther away, it will orbit less quickly (just as planets farther from the Sun move more slowly in their orbits). Thus, the month will get longer. Also, because the Moon will be more distant, total eclipses of the Sun will no longer be visible from Earth.

Both the day and the month will continue to get longer, although bear in mind that the effects are very gradual. Darwin’s calculations were confirmed by mirrors placed on the Moon by Apollo 11 astronauts. These show that the Moon is moving away by 3.8 centimeters per year, and that ultimately—billions of years in the future—the day and the month will be the same length (about 47 of our present days). At this point the Moon will be stationary in the sky over the same spot on Earth, meaning some parts of Earth will see the Moon and its phases and other parts will never see them. This kind of alignment is already true for Pluto’s moon Charon (among others). Its rotation and orbital period are the same length as a day on Pluto.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
Citation information

© Oct 13, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.