Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Astronomy

For Further Exploration

AstronomyFor Further Exploration

Articles

Andrews, B. “What Are Galaxies Trying to Tell Us?” Astronomy (February 2011): 24. Introduction to our understanding of the shapes and evolution of different types of galaxies.

Barger, A. “The Midlife Crisis of the Cosmos.” Scientific American (January 2005): 46. On how our time differs from the early universe in terms of what galaxies are doing, and what role supermassive black holes play.

Berman, B. “The Missing Universe.” Astronomy (April 2014): 24. Brief review of dark matter, what it could be, and modified theories of gravity that can also explain it.

Faber, S., et al. “Staring Back to Cosmic Dawn.” Sky & Telescope (June 2014): 18. Program to see the most distant and earliest galaxies with the Hubble.

Geller, M., & Huchra, J. “Mapping the Universe.” Sky & Telescope (August 1991): 134. On their project mapping the location of galaxies in three dimensions.

Hooper, D. “Dark Matter in the Discovery Age.” Sky & Telescope (January 2013): 26. On experiments looking for the nature of dark matter.

James, C. R. “The Hubble Deep Field: The Picture Worth a Trillion Stars.” Astronomy (November 2015): 44. Detailed history and results, plus the Hubble Ultra-Deep Field.

Kaufmann, G., & van den Bosch, F. “The Life Cycle of Galaxies.” Scientific American (June 2002): 46. On the evolution of galaxies and how the different shapes of galaxies develop.

Knapp, G. “Mining the Heavens: The Sloan Digital Sky Survey.” Sky & Telescope (August 1997): 40.

Kron, R., & Butler, S. “Stars and Strips Forever.” Astronomy (February 1999): 48. On the Sloan Digital Survey.

Kruesi, L. “What Do We Really Know about Dark Matter?” Astronomy (November 2009): 28. Focuses on what dark matter could be and experiments to find out.

Larson, R., & Bromm, V. “The First Stars in the Universe.” Scientific American (December 2001): 64. On the dark ages and the birth of the first stars.

Nadis, S. “Exploring the Galaxy-Black Hole Connection.” Astronomy (May 2010): 28. About the role of massive black holes in the evolution of galaxies.

Nadis, S. “Astronomers Reveal the Universe’s Hidden Structure.” Astronomy (September 2013): 44. How dark matter is the scaffolding on which the visible universe rests.

Schilling, G. “Hubble Goes the Distance.” Sky & Telescope (January 2015): 20. Using gravitational lensing with HST to see the most distant galaxies.

Strauss, M. “Reading the Blueprints of Creation.” Scientific American (February 2004): 54. On large-scale surveys of galaxies and what they tell us about the organization of the early universe.

Tytell, D. “A Wide Deep Field: Getting the Big Picture.” Sky & Telescope (September 2001): 42. On the NOAO survey of deep sky objects.

Villard, R. “How Gravity’s Grand Illusion Reveals the Universe.” Astronomy (January 2013): 44. On gravitational lensing and what it teaches us.

Websites

Assembly of Galaxies: http://jwst.nasa.gov/galaxies.html. Introductory background information about galaxies: what we know and what we want to learn.

Brief History of Gravitational Lensing: http://www.einstein-online.info/spotlights/grav_lensing_history. From Einstein OnLine.

Cosmic Structures: http://skyserver.sdss.org/dr1/en/astro/structures/structures.asp. Brief review page on how galaxies are organized, from the Sloan Survey.

Gravitational Lensing Discoveries from the Hubble Space Telescope: https://esahubble.org/news/?search=gravitational+lens. A chronological list of news releases and images.

Local Group of Galaxies: http://www.atlasoftheuniverse.com/localgr.html. Clickable map from the Atlas of the Universe project. See also their Virgo Cluster page: http://www.atlasoftheuniverse.com/galgrps/vir.html.

Sloan Digital Sky Survey Website: https://www.youtube.com/watch?v=1RXpHiCNsKU. Includes nontechnical and technical parts.

Spyglasses into the Universe: http://www.spacetelescope.org/science/gravitational_lensing/. Hubble page on gravitational lensing; includes links to videos.

Virgo Cluster of Galaxies: http://messier.seds.org/more/virgo.html. A page with brief information and links to maps, images, etc.

Videos

Cosmic Simulations: http://www.tapir.caltech.edu/~phopkins/Site/Movies_cosmo.html. Beautiful videos with computer simulations of how galaxies form, from the FIRE group.

Cosmology of the Local Universe: http://irfu.cea.fr/cosmography. Narrated flythrough of maps of galaxies showing the closer regions of the universe (17:35).

Gravitational Lensing: https://www.youtube.com/watch?v=4Z71RtwoOas. Video from Fermilab, with Dr. Don Lincoln (7:14).

How Galaxies Were Cooked from the Primordial Soup: https://www.youtube.com/watch?v=wqNNCm7SNyw. A 2013 public talk by Dr. Sandra Faber of Lick Observatory about the evolution of galaxies; part of the Silicon Valley Astronomy Lecture Series (1:19:33).

Hubble Extreme Deep Field Pushes Back Frontiers of Time and Space: https://www.youtube.com/watch?v=gu_VhzhlqGw. Brief 2012 video (2:42).

Looking Deeply into the Universe in 3-D: https://www.eso.org/public/videos/eso1507a/. 2015 ESOCast video on how the Very Large Telescopes are used to explore the Hubble Ultra-Deep Field and learn more about the faintest and most distant galaxies (5:12).

Millennium Simulation: http://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium. A supercomputer in Germany follows the evolution of a representative large box as the universe evolves.

Movies of flying through the large-scale local structure: http://www.ifa.hawaii.edu/~tully/. By Brent Tully.

Shedding Light on Dark Matter: https://www.youtube.com/watch?v=bZW_B9CC-gI. 2008 TED talk on galaxies and dark matter by physicist Patricia Burchat (17:08).

Sloan Digital Sky Survey overview movies: https://www.youtube.com/watch?v=9vfOqVHyohw.

Virtual Universe: https://www.youtube.com/watch?v=SY0bKE10ZDM. An MIT model of a section of universe evolving, with dark matter included (4:11).

When Two Galaxies Collide: http://www.openculture.com/2009/04/when_galaxies_collide.html. Computer simulation, which stops at various points and shows a Hubble image of just such a system in nature (1:37).

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
Citation information

© Jan 28, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.