Thought Questions
Suppose the Milky Way was a band of light extending only halfway around the sky (that is, in a semicircle). What, then, would you conclude about the Sun’s location in the Galaxy? Give your reasoning.
Suppose somebody proposed that rather than invoking dark matter to explain the increased orbital velocities of stars beyond the Sun’s orbit, the problem could be solved by assuming that the Milky Way’s central black hole was much more massive. Does simply increasing the assumed mass of the Milky Way’s central supermassive black hole correctly resolve the issue of unexpectedly high orbital velocities in the Galaxy? Why or why not?
The globular clusters revolve around the Galaxy in highly elliptical orbits. Where would you expect the clusters to spend most of their time? (Think of Kepler’s laws.) At any given time, would you expect most globular clusters to be moving at high or low speeds with respect to the center of the Galaxy? Why?
Shapley used the positions of globular clusters to determine the location of the galactic center. Could he have used open clusters? Why or why not?
Consider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae.
- Which occur only in spiral arms?
- Which occur only in the parts of the Galaxy other than the spiral arms?
- Which are thought to be very young?
- Which are thought to be very old?
- Which have the hottest stars?
The dwarf galaxy in Sagittarius is the one closest to the Milky Way, yet it was discovered only in 1994. Can you think of a reason it was not discovered earlier? (Hint: Think about what else is in its constellation.)
Suppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.
Why does star formation occur primarily in the disk of the Galaxy?
Where in the Galaxy would you expect to find Type II supernovae, which are the explosions of massive stars that go through their lives very quickly? Where would you expect to find Type I supernovae, which involve the explosions of white dwarfs?
Suppose that stars evolved without losing mass—that once matter was incorporated into a star, it remained there forever. How would the appearance of the Galaxy be different from what it is now? Would there be population I and population II stars? What other differences would there be?