Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Astronomy

Figuring for Yourself

AstronomyFiguring for Yourself

Figuring for Yourself

33.

The text says a star does not change its mass very much during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember it’s only the core of the star that is hot enough for fusion). Look in earlier chapters to find out what percentage of the hydrogen mass involved in fusion is lost because it is converted to energy. By how much does the mass of the whole star change as a result of fusion? Were we correct to say that the mass of a star does not change significantly while it is on the main sequence?

34.

The text explains that massive stars have shorter lifetimes than low-mass stars. Even though massive stars have more fuel to burn, they use it up faster than low-mass stars. You can check and see whether this statement is true. The lifetime of a star is directly proportional to the amount of mass (fuel) it contains and inversely proportional to the rate at which it uses up that fuel (i.e., to its luminosity). Since the lifetime of the Sun is about 1010 y, we have the following relationship:
T=1010MLyT=1010MLy
where T is the lifetime of a main-sequence star, M is its mass measured in terms of the mass of the Sun, and L is its luminosity measured in terms of the Sun’s luminosity.

  1. Explain in words why this equation works.
  2. Use the data in Table 18.3 to calculate the ages of the main-sequence stars listed.
  3. Do low-mass stars have longer main-sequence lifetimes?
  4. Do you get the same answers as those in Table 22.1?
35.

You can use the equation in Exercise 22.34 to estimate the approximate ages of the clusters in Figure 22.10, Figure 22.12, and Figure 22.13. Use the information in the figures to determine the luminosity of the most massive star still on the main sequence. Now use the data in Table 18.3 to estimate the mass of this star. Then calculate the age of the cluster. This method is similar to the procedure used by astronomers to obtain the ages of clusters, except that they use actual data and model calculations rather than simply making estimates from a drawing. How do your ages compare with the ages in the text?

36.

You can estimate the age of the planetary nebula in image (c) in Figure 22.18. The diameter of the nebula is 600 times the diameter of our own solar system, or about 0.8 light-year. The gas is expanding away from the star at a rate of about 25 mi/s. Considering that distance = velocity ×× time, calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance.

37.

If star A has a core temperature T, and star B has a core temperature 3T, how does the rate of fusion of star A compare to the rate of fusion of star B?

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
Citation information

© Jan 28, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.