Skip to Content
OpenStax Logo
Astronomy

21.3 Evidence That Planets Form around Other Stars

Astronomy21.3 Evidence That Planets Form around Other Stars
Buy book
  1. Preface
  2. 1 Science and the Universe: A Brief Tour
    1. Introduction
    2. 1.1 The Nature of Astronomy
    3. 1.2 The Nature of Science
    4. 1.3 The Laws of Nature
    5. 1.4 Numbers in Astronomy
    6. 1.5 Consequences of Light Travel Time
    7. 1.6 A Tour of the Universe
    8. 1.7 The Universe on the Large Scale
    9. 1.8 The Universe of the Very Small
    10. 1.9 A Conclusion and a Beginning
    11. For Further Exploration
  3. 2 Observing the Sky: The Birth of Astronomy
    1. Thinking Ahead
    2. 2.1 The Sky Above
    3. 2.2 Ancient Astronomy
    4. 2.3 Astrology and Astronomy
    5. 2.4 The Birth of Modern Astronomy
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  4. 3 Orbits and Gravity
    1. Thinking Ahead
    2. 3.1 The Laws of Planetary Motion
    3. 3.2 Newton’s Great Synthesis
    4. 3.3 Newton’s Universal Law of Gravitation
    5. 3.4 Orbits in the Solar System
    6. 3.5 Motions of Satellites and Spacecraft
    7. 3.6 Gravity with More Than Two Bodies
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  5. 4 Earth, Moon, and Sky
    1. Thinking Ahead
    2. 4.1 Earth and Sky
    3. 4.2 The Seasons
    4. 4.3 Keeping Time
    5. 4.4 The Calendar
    6. 4.5 Phases and Motions of the Moon
    7. 4.6 Ocean Tides and the Moon
    8. 4.7 Eclipses of the Sun and Moon
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  6. 5 Radiation and Spectra
    1. Thinking Ahead
    2. 5.1 The Behavior of Light
    3. 5.2 The Electromagnetic Spectrum
    4. 5.3 Spectroscopy in Astronomy
    5. 5.4 The Structure of the Atom
    6. 5.5 Formation of Spectral Lines
    7. 5.6 The Doppler Effect
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  7. 6 Astronomical Instruments
    1. Thinking Ahead
    2. 6.1 Telescopes
    3. 6.2 Telescopes Today
    4. 6.3 Visible-Light Detectors and Instruments
    5. 6.4 Radio Telescopes
    6. 6.5 Observations outside Earth’s Atmosphere
    7. 6.6 The Future of Large Telescopes
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  8. 7 Other Worlds: An Introduction to the Solar System
    1. Thinking Ahead
    2. 7.1 Overview of Our Planetary System
    3. 7.2 Composition and Structure of Planets
    4. 7.3 Dating Planetary Surfaces
    5. 7.4 Origin of the Solar System
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  9. 8 Earth as a Planet
    1. Thinking Ahead
    2. 8.1 The Global Perspective
    3. 8.2 Earth’s Crust
    4. 8.3 Earth’s Atmosphere
    5. 8.4 Life, Chemical Evolution, and Climate Change
    6. 8.5 Cosmic Influences on the Evolution of Earth
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  10. 9 Cratered Worlds
    1. Thinking Ahead
    2. 9.1 General Properties of the Moon
    3. 9.2 The Lunar Surface
    4. 9.3 Impact Craters
    5. 9.4 The Origin of the Moon
    6. 9.5 Mercury
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  11. 10 Earthlike Planets: Venus and Mars
    1. Thinking Ahead
    2. 10.1 The Nearest Planets: An Overview
    3. 10.2 The Geology of Venus
    4. 10.3 The Massive Atmosphere of Venus
    5. 10.4 The Geology of Mars
    6. 10.5 Water and Life on Mars
    7. 10.6 Divergent Planetary Evolution
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  12. 11 The Giant Planets
    1. Thinking Ahead
    2. 11.1 Exploring the Outer Planets
    3. 11.2 The Giant Planets
    4. 11.3 Atmospheres of the Giant Planets
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  13. 12 Rings, Moons, and Pluto
    1. Thinking Ahead
    2. 12.1 Ring and Moon Systems Introduced
    3. 12.2 The Galilean Moons of Jupiter
    4. 12.3 Titan and Triton
    5. 12.4 Pluto and Charon
    6. 12.5 Planetary Rings
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  14. 13 Comets and Asteroids: Debris of the Solar System
    1. Thinking Ahead
    2. 13.1 Asteroids
    3. 13.2 Asteroids and Planetary Defense
    4. 13.3 The “Long-Haired” Comets
    5. 13.4 The Origin and Fate of Comets and Related Objects
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  15. 14 Cosmic Samples and the Origin of the Solar System
    1. Thinking Ahead
    2. 14.1 Meteors
    3. 14.2 Meteorites: Stones from Heaven
    4. 14.3 Formation of the Solar System
    5. 14.4 Comparison with Other Planetary Systems
    6. 14.5 Planetary Evolution
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  16. 15 The Sun: A Garden-Variety Star
    1. Thinking Ahead
    2. 15.1 The Structure and Composition of the Sun
    3. 15.2 The Solar Cycle
    4. 15.3 Solar Activity above the Photosphere
    5. 15.4 Space Weather
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  17. 16 The Sun: A Nuclear Powerhouse
    1. Thinking Ahead
    2. 16.1 Sources of Sunshine: Thermal and Gravitational Energy
    3. 16.2 Mass, Energy, and the Theory of Relativity
    4. 16.3 The Solar Interior: Theory
    5. 16.4 The Solar Interior: Observations
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  18. 17 Analyzing Starlight
    1. Thinking Ahead
    2. 17.1 The Brightness of Stars
    3. 17.2 Colors of Stars
    4. 17.3 The Spectra of Stars (and Brown Dwarfs)
    5. 17.4 Using Spectra to Measure Stellar Radius, Composition, and Motion
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  19. 18 The Stars: A Celestial Census
    1. Thinking Ahead
    2. 18.1 A Stellar Census
    3. 18.2 Measuring Stellar Masses
    4. 18.3 Diameters of Stars
    5. 18.4 The H–R Diagram
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  20. 19 Celestial Distances
    1. Thinking Ahead
    2. 19.1 Fundamental Units of Distance
    3. 19.2 Surveying the Stars
    4. 19.3 Variable Stars: One Key to Cosmic Distances
    5. 19.4 The H–R Diagram and Cosmic Distances
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  21. 20 Between the Stars: Gas and Dust in Space
    1. Thinking Ahead
    2. 20.1 The Interstellar Medium
    3. 20.2 Interstellar Gas
    4. 20.3 Cosmic Dust
    5. 20.4 Cosmic Rays
    6. 20.5 The Life Cycle of Cosmic Material
    7. 20.6 Interstellar Matter around the Sun
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  22. 21 The Birth of Stars and the Discovery of Planets outside the Solar System
    1. Thinking Ahead
    2. 21.1 Star Formation
    3. 21.2 The H–R Diagram and the Study of Stellar Evolution
    4. 21.3 Evidence That Planets Form around Other Stars
    5. 21.4 Planets beyond the Solar System: Search and Discovery
    6. 21.5 Exoplanets Everywhere: What We Are Learning
    7. 21.6 New Perspectives on Planet Formation
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  23. 22 Stars from Adolescence to Old Age
    1. Thinking Ahead
    2. 22.1 Evolution from the Main Sequence to Red Giants
    3. 22.2 Star Clusters
    4. 22.3 Checking Out the Theory
    5. 22.4 Further Evolution of Stars
    6. 22.5 The Evolution of More Massive Stars
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  24. 23 The Death of Stars
    1. Thinking Ahead
    2. 23.1 The Death of Low-Mass Stars
    3. 23.2 Evolution of Massive Stars: An Explosive Finish
    4. 23.3 Supernova Observations
    5. 23.4 Pulsars and the Discovery of Neutron Stars
    6. 23.5 The Evolution of Binary Star Systems
    7. 23.6 The Mystery of the Gamma-Ray Bursts
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  25. 24 Black Holes and Curved Spacetime
    1. Thinking Ahead
    2. 24.1 Introducing General Relativity
    3. 24.2 Spacetime and Gravity
    4. 24.3 Tests of General Relativity
    5. 24.4 Time in General Relativity
    6. 24.5 Black Holes
    7. 24.6 Evidence for Black Holes
    8. 24.7 Gravitational Wave Astronomy
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  26. 25 The Milky Way Galaxy
    1. Thinking Ahead
    2. 25.1 The Architecture of the Galaxy
    3. 25.2 Spiral Structure
    4. 25.3 The Mass of the Galaxy
    5. 25.4 The Center of the Galaxy
    6. 25.5 Stellar Populations in the Galaxy
    7. 25.6 The Formation of the Galaxy
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  27. 26 Galaxies
    1. Thinking Ahead
    2. 26.1 The Discovery of Galaxies
    3. 26.2 Types of Galaxies
    4. 26.3 Properties of Galaxies
    5. 26.4 The Extragalactic Distance Scale
    6. 26.5 The Expanding Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  28. 27 Active Galaxies, Quasars, and Supermassive Black Holes
    1. Thinking Ahead
    2. 27.1 Quasars
    3. 27.2 Supermassive Black Holes: What Quasars Really Are
    4. 27.3 Quasars as Probes of Evolution in the Universe
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  29. 28 The Evolution and Distribution of Galaxies
    1. Thinking Ahead
    2. 28.1 Observations of Distant Galaxies
    3. 28.2 Galaxy Mergers and Active Galactic Nuclei
    4. 28.3 The Distribution of Galaxies in Space
    5. 28.4 The Challenge of Dark Matter
    6. 28.5 The Formation and Evolution of Galaxies and Structure in the Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  30. 29 The Big Bang
    1. Thinking Ahead
    2. 29.1 The Age of the Universe
    3. 29.2 A Model of the Universe
    4. 29.3 The Beginning of the Universe
    5. 29.4 The Cosmic Microwave Background
    6. 29.5 What Is the Universe Really Made Of?
    7. 29.6 The Inflationary Universe
    8. 29.7 The Anthropic Principle
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  31. 30 Life in the Universe
    1. Thinking Ahead
    2. 30.1 The Cosmic Context for Life
    3. 30.2 Astrobiology
    4. 30.3 Searching for Life beyond Earth
    5. 30.4 The Search for Extraterrestrial Intelligence
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  32. A | How to Study for an Introductory Astronomy Class
  33. B | Astronomy Websites, Images, and Apps
  34. C | Scientific Notation
  35. D | Units Used in Science
  36. E | Some Useful Constants for Astronomy
  37. F | Physical and Orbital Data for the Planets
  38. G | Selected Moons of the Planets
  39. H | Future Total Eclipses
  40. I | The Nearest Stars, Brown Dwarfs, and White Dwarfs
  41. J | The Brightest Twenty Stars
  42. K | The Chemical Elements
  43. L | The Constellations
  44. M | Star Chart and Sky Event Resources
  45. Index

Learning Objectives

By the end of this section, you will be able to:

  • Trace the evolution of dust surrounding a protostar, leading to the development of rocky planets and gas giants
  • Estimate the timescale for growth of planets using observations of the disks surrounding young stars
  • Evaluate evidence for planets around forming stars based on the structures seen in images of the circumstellar dust disks

Having developed on a planet and finding it essential to our existence, we have a special interest in how planets fit into the story of star formation. Yet planets outside the solar system are extremely difficult to detect. Recall that we see planets in our own system only because they reflect sunlight and are close by. When we look to the other stars, we find that the amount of light a planet reflects is a depressingly tiny fraction of the light its star gives off. Furthermore, from a distance, planets are lost in the glare of their much-brighter parent stars.

Disks around Protostars: Planetary Systems in Formation

It is a lot easier to detect the spread-out raw material from which planets might be assembled than to detect planets after they are fully formed. From our study of the solar system, we understand that planets form by the gathering together of gas and dust particles in orbit around a newly created star. Each dust particle is heated by the young protostar and radiates in the infrared region of the spectrum. Before any planets form, we can detect such radiation from all of the spread-out individual dust particles that are destined to become parts of planets. We can also detect the silhouette of the disk if it blocks bright light coming from a source behind it (Figure 21.13).

Four Hubble Space Telescope Images of Disks around Protostars in the Orion Nebula. Each image shows a dark, elliptical shape silhouetted against the bright glowing gas in the background. At the center of each ellipse is a bright reddish spot, indicating the location of the embedded protostar.
Figure 21.13 Disks around Protostars. These Hubble Space Telescope images show four disks around young stars in the Orion Nebula. The dark, dusty disks are seen silhouetted against the bright backdrop of the glowing gas in the nebula. The size of each image is about 30 times the diameter of our planetary system; this means the disks we see here range in size from two to eight times the orbit of Pluto. The red glow at the center of each disk is a young star, no more than a million years old. These images correspond to the stage in the life of a protostar shown in part (d) of Figure 21.8. (credit: modification of work by Mark McCaughrean (Max-Planck-Institute for Astronomy), C. Robert O’Dell (Rice University), and NASA)

Once the dust particles gather together and form a few planets (and maybe some moons), the overwhelming majority of the dust is hidden in the interiors of the planets where we cannot see it. All we can now detect is the radiation from the outside surfaces, which cover a drastically smaller area than the huge, dusty disk from which they formed. The amount of infrared radiation is therefore greatest before the dust particles combine into planets. For this reason, our search for planets begins with a search for infrared radiation from the material required to make them.

A disk of gas and dust appears to be an essential part of star formation. Observations show that nearly all very young protostars have disks and that the disks range in size from 10 to 1000 AU. (For comparison, the average diameter of the orbit of Pluto, which can be considered the rough size of our own planetary system, is 80 AU, whereas the outer diameter of the Kuiper belt of smaller icy bodies is about 100 AU.) The mass contained in these disks is typically 1–10% of the mass of our own Sun, which is more than the mass of all the planets in our solar system put together. Such observations already demonstrate that a large fraction of stars begin their lives with enough material in the right place to form a planetary system.

The Timing of Planet Formation and Growth

We can use observations of how the disks change with time to estimate how long it takes for planets to form. If we measure the temperature and luminosity of a protostar, then, as we saw, we can place it in an H–R diagram like the one shown in Figure 21.12. By comparing the real star with our models of how protostars should evolve with time, we can estimate its age. We can then look at how the disks we observe change with the ages of the stars that they surround.

What such observations show is that if a protostar is less than about 1 to 3 million years old, its disk extends all the way from very close to the surface of the star out to tens or hundreds of AU away. In older protostars, we find disks with outer parts that still contain large amounts of dust, but the inner regions have lost most of their dust. In these objects, the disk looks like a donut, with the protostar centered in its hole. The inner, dense parts of most disks have disappeared by the time the stars are 10 million years old (Figure 21.14).

Protoplanetary Disks of HD 141943 and HD 191089. At left is shown an image of HD 141943. The central star has been blocked so the light from the disk can be photographed. A narrow, elliptical shaped region can be seen. To the right of the image is a computer model of the disk, showing the central star, drawn to the same scale as the image. On the right is HD 191089. Its central star is also blocked. The image shows a circular region of light. Also shown is a computer model of the disk, at the same scale as the image.
Figure 21.14 Protoplanetary Disks around Two Stars. The left view of each star shows infrared observations by the Hubble Space Telescope of their protoplanetary disks. The central star is much brighter than the surrounding disk, so the instrument includes a coronograph, which has a small shield that blocks the light of the central star but allows the surrounding disk to be imaged. The right image of each star shows models of the disks based on the observations. The star HD 141943 has an age of about 17 million years, while HD 191089 is about 12 million years old. (credit: modification of work by NASA, ESA, R. Soummer and M. Perrin (STScI), L. Pueyo (STScI/Johns Hopkins University), C. Chen and D. Golimowski (STScI), J.B. Hagan (STScI/Purdue University), T. Mittal (University of California, Berkeley/Johns Hopkins University), E. Choquet, M. Moerchen, and M. N’Diaye (STScI), A. Rajan (Arizona State University), S. Wolff (STScI/Purdue University), J. Debes and D. Hines (STScI), and G. Schneider (Steward Observatory/University of Arizona))

Calculations show that the formation of one or more planets could produce such a donut-like distribution of dust. Suppose a planet forms a few AU away from the protostar, presumably due to the gathering together of matter from the disk. As the planet grows in mass, the process clears out a dust-free region in its immediate neighborhood. Calculations also show that any small dust particles and gas that were initially located in the region between the protostar and the planet, and that are not swept up by the planet, will then fall onto the star very quickly in about 50,000 years.

Matter lying outside the planet’s orbit, in contrast, is prevented from moving into the hole by the gravitational forces exerted by the planet. (We saw something similar in Saturn’s rings, where the action of the shepherd moons keeps the material near the edge of the rings from spreading out.) If the formation of a planet is indeed what produces and sustains holes in the disks that surround very young stars, then planets must form in 3 to 30 million years. This is a short period compared with the lifetimes of most stars and shows that the formation of planets may be a quick byproduct of the birth of stars.

Calculations show that accretion can drive the rapid growth of planets—small, dust-grain-size particles orbiting in the disk collide and stick together, with the larger collections growing more rapidly as they attract and capture smaller ones. Once these clumps grow to about 10 centimeters in size or so, they enter a perilous stage in their development. At that size, unless they can grow to larger than about 100 meters in diameter, they are subject to drag forces produced by friction with the gas in the disk—and their orbits can rapidly decay, plunging them into the host star. Therefore, these bodies must rapidly grow to nearly 1 kilometer in size in diameter to avoid a fiery fate. At this stage, they are considered planetesimals (the small chunks of solid matter—ice and dust particles—that you learned about in Other Worlds: An Introduction to the Solar System). Once they survive to those sizes, the largest survivors will continue to grow by accreting smaller planetesimals; ultimately, this process results in a few large planets.

If the growing planets reach a mass bigger than about 10 times the mass of Earth, their gravity is strong enough to capture and hold on to hydrogen gas that remains in the disk. At that point, they will grow in mass and radius rapidly, reaching giant planet dimensions. However, to do so requires that the rapidly evolving central star hasn’t yet driven away the gas in the disk with its increasingly vigorous wind (see the earlier section on Star Formation). From observations, we see that the disk can be blown away within 10 million years, so growth of a giant planet must also be a very fast process, astronomically speaking.

Debris Disks and Shepherd Planets

The dust around newly formed stars is gradually either incorporated into the growing planets in the newly forming planetary system or ejected through gravitational interactions with the planets into space. The dust will disappear after about 30 million years unless the disk is continually supplied with new material. Local comets and asteroids are the most likely sources of new dust. As the planet-size bodies grow, they stir up the orbits of smaller objects in the area. These small bodies collide at high speeds, shatter, and produce tiny particles of silicate dust and ices that can keep the disk supplied with the debris from these collisions.

Over several hundred million years, the comets and asteroids will gradually be reduced in number, the frequency of collisions will go down, and the supply of fresh dust will diminish. Remember that the heavy bombardment in the early solar system ended when the Sun was only about 500 million years old. Observations show that the dusty “debris disks” around stars also become largely undetectable by the time the stars reach an age of 400 to 500 million years. It is likely, however, that some small amount of cometary material will remain in orbit, much like our Kuiper belt, a flattened disk of comets outside the orbit of Neptune.

In a young planetary system, even if we cannot see the planets directly, the planets can concentrate the dust particles into clumps and arcs that are much larger than the planets themselves and more easily imaged. This is similar to how the tiny moons of Saturn shepherd the particles in the rings and produce large arcs and structures in Saturn’s rings.

Debris disks—many with just such clumps and arcs—have now been found around many stars, such as HL Tau, located about 450 light-years from Earth in the constellation Taurus (Figure 21.15). In some stars, the brightness of the rings varies with position; around other stars, there are bright arcs and gaps in the rings. The brightness indicates the relative concentration of dust, since what we are seeing is infrared (heat radiation) from the dust particles in the rings. More dust means more radiation.

Near-Infrared Image of the Dust Ring Orbiting the Young Star HL Tauri. The ring surrounding the star is seen here nearly face-on, and thus appears nearly circular. There are many dark gaps in the rings, similar to the appearance of the rings of Saturn. These gaps reveal the presence of emerging planetary bodies forming in the disk around HL Tauri.
Figure 21.15 Dust Ring around a Young Star. This image was made by ALMA (the Atacama Large Millimeter/Submillimeter Array) at a wavelength of 1.3 millimeters and shows the young star HL Tau and its protoplanetary disk. It reveals multiple rings and gaps that indicate the presence of emerging planets, which are sweeping their orbits clear of dust and gas. (credit: modification of work by ALMA (ESO/NAOJ/NRAO))
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
Citation information

© Oct 13, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.