Skip to Content
OpenStax Logo
Astronomy

17.2 Colors of Stars

Astronomy17.2 Colors of Stars
Buy book
  1. Preface
  2. 1 Science and the Universe: A Brief Tour
    1. Introduction
    2. 1.1 The Nature of Astronomy
    3. 1.2 The Nature of Science
    4. 1.3 The Laws of Nature
    5. 1.4 Numbers in Astronomy
    6. 1.5 Consequences of Light Travel Time
    7. 1.6 A Tour of the Universe
    8. 1.7 The Universe on the Large Scale
    9. 1.8 The Universe of the Very Small
    10. 1.9 A Conclusion and a Beginning
    11. For Further Exploration
  3. 2 Observing the Sky: The Birth of Astronomy
    1. Thinking Ahead
    2. 2.1 The Sky Above
    3. 2.2 Ancient Astronomy
    4. 2.3 Astrology and Astronomy
    5. 2.4 The Birth of Modern Astronomy
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  4. 3 Orbits and Gravity
    1. Thinking Ahead
    2. 3.1 The Laws of Planetary Motion
    3. 3.2 Newton’s Great Synthesis
    4. 3.3 Newton’s Universal Law of Gravitation
    5. 3.4 Orbits in the Solar System
    6. 3.5 Motions of Satellites and Spacecraft
    7. 3.6 Gravity with More Than Two Bodies
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  5. 4 Earth, Moon, and Sky
    1. Thinking Ahead
    2. 4.1 Earth and Sky
    3. 4.2 The Seasons
    4. 4.3 Keeping Time
    5. 4.4 The Calendar
    6. 4.5 Phases and Motions of the Moon
    7. 4.6 Ocean Tides and the Moon
    8. 4.7 Eclipses of the Sun and Moon
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  6. 5 Radiation and Spectra
    1. Thinking Ahead
    2. 5.1 The Behavior of Light
    3. 5.2 The Electromagnetic Spectrum
    4. 5.3 Spectroscopy in Astronomy
    5. 5.4 The Structure of the Atom
    6. 5.5 Formation of Spectral Lines
    7. 5.6 The Doppler Effect
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  7. 6 Astronomical Instruments
    1. Thinking Ahead
    2. 6.1 Telescopes
    3. 6.2 Telescopes Today
    4. 6.3 Visible-Light Detectors and Instruments
    5. 6.4 Radio Telescopes
    6. 6.5 Observations outside Earth’s Atmosphere
    7. 6.6 The Future of Large Telescopes
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  8. 7 Other Worlds: An Introduction to the Solar System
    1. Thinking Ahead
    2. 7.1 Overview of Our Planetary System
    3. 7.2 Composition and Structure of Planets
    4. 7.3 Dating Planetary Surfaces
    5. 7.4 Origin of the Solar System
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  9. 8 Earth as a Planet
    1. Thinking Ahead
    2. 8.1 The Global Perspective
    3. 8.2 Earth’s Crust
    4. 8.3 Earth’s Atmosphere
    5. 8.4 Life, Chemical Evolution, and Climate Change
    6. 8.5 Cosmic Influences on the Evolution of Earth
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  10. 9 Cratered Worlds
    1. Thinking Ahead
    2. 9.1 General Properties of the Moon
    3. 9.2 The Lunar Surface
    4. 9.3 Impact Craters
    5. 9.4 The Origin of the Moon
    6. 9.5 Mercury
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  11. 10 Earthlike Planets: Venus and Mars
    1. Thinking Ahead
    2. 10.1 The Nearest Planets: An Overview
    3. 10.2 The Geology of Venus
    4. 10.3 The Massive Atmosphere of Venus
    5. 10.4 The Geology of Mars
    6. 10.5 Water and Life on Mars
    7. 10.6 Divergent Planetary Evolution
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  12. 11 The Giant Planets
    1. Thinking Ahead
    2. 11.1 Exploring the Outer Planets
    3. 11.2 The Giant Planets
    4. 11.3 Atmospheres of the Giant Planets
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  13. 12 Rings, Moons, and Pluto
    1. Thinking Ahead
    2. 12.1 Ring and Moon Systems Introduced
    3. 12.2 The Galilean Moons of Jupiter
    4. 12.3 Titan and Triton
    5. 12.4 Pluto and Charon
    6. 12.5 Planetary Rings
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  14. 13 Comets and Asteroids: Debris of the Solar System
    1. Thinking Ahead
    2. 13.1 Asteroids
    3. 13.2 Asteroids and Planetary Defense
    4. 13.3 The “Long-Haired” Comets
    5. 13.4 The Origin and Fate of Comets and Related Objects
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  15. 14 Cosmic Samples and the Origin of the Solar System
    1. Thinking Ahead
    2. 14.1 Meteors
    3. 14.2 Meteorites: Stones from Heaven
    4. 14.3 Formation of the Solar System
    5. 14.4 Comparison with Other Planetary Systems
    6. 14.5 Planetary Evolution
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  16. 15 The Sun: A Garden-Variety Star
    1. Thinking Ahead
    2. 15.1 The Structure and Composition of the Sun
    3. 15.2 The Solar Cycle
    4. 15.3 Solar Activity above the Photosphere
    5. 15.4 Space Weather
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  17. 16 The Sun: A Nuclear Powerhouse
    1. Thinking Ahead
    2. 16.1 Sources of Sunshine: Thermal and Gravitational Energy
    3. 16.2 Mass, Energy, and the Theory of Relativity
    4. 16.3 The Solar Interior: Theory
    5. 16.4 The Solar Interior: Observations
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  18. 17 Analyzing Starlight
    1. Thinking Ahead
    2. 17.1 The Brightness of Stars
    3. 17.2 Colors of Stars
    4. 17.3 The Spectra of Stars (and Brown Dwarfs)
    5. 17.4 Using Spectra to Measure Stellar Radius, Composition, and Motion
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  19. 18 The Stars: A Celestial Census
    1. Thinking Ahead
    2. 18.1 A Stellar Census
    3. 18.2 Measuring Stellar Masses
    4. 18.3 Diameters of Stars
    5. 18.4 The H–R Diagram
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  20. 19 Celestial Distances
    1. Thinking Ahead
    2. 19.1 Fundamental Units of Distance
    3. 19.2 Surveying the Stars
    4. 19.3 Variable Stars: One Key to Cosmic Distances
    5. 19.4 The H–R Diagram and Cosmic Distances
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  21. 20 Between the Stars: Gas and Dust in Space
    1. Thinking Ahead
    2. 20.1 The Interstellar Medium
    3. 20.2 Interstellar Gas
    4. 20.3 Cosmic Dust
    5. 20.4 Cosmic Rays
    6. 20.5 The Life Cycle of Cosmic Material
    7. 20.6 Interstellar Matter around the Sun
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  22. 21 The Birth of Stars and the Discovery of Planets outside the Solar System
    1. Thinking Ahead
    2. 21.1 Star Formation
    3. 21.2 The H–R Diagram and the Study of Stellar Evolution
    4. 21.3 Evidence That Planets Form around Other Stars
    5. 21.4 Planets beyond the Solar System: Search and Discovery
    6. 21.5 Exoplanets Everywhere: What We Are Learning
    7. 21.6 New Perspectives on Planet Formation
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  23. 22 Stars from Adolescence to Old Age
    1. Thinking Ahead
    2. 22.1 Evolution from the Main Sequence to Red Giants
    3. 22.2 Star Clusters
    4. 22.3 Checking Out the Theory
    5. 22.4 Further Evolution of Stars
    6. 22.5 The Evolution of More Massive Stars
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  24. 23 The Death of Stars
    1. Thinking Ahead
    2. 23.1 The Death of Low-Mass Stars
    3. 23.2 Evolution of Massive Stars: An Explosive Finish
    4. 23.3 Supernova Observations
    5. 23.4 Pulsars and the Discovery of Neutron Stars
    6. 23.5 The Evolution of Binary Star Systems
    7. 23.6 The Mystery of the Gamma-Ray Bursts
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  25. 24 Black Holes and Curved Spacetime
    1. Thinking Ahead
    2. 24.1 Introducing General Relativity
    3. 24.2 Spacetime and Gravity
    4. 24.3 Tests of General Relativity
    5. 24.4 Time in General Relativity
    6. 24.5 Black Holes
    7. 24.6 Evidence for Black Holes
    8. 24.7 Gravitational Wave Astronomy
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  26. 25 The Milky Way Galaxy
    1. Thinking Ahead
    2. 25.1 The Architecture of the Galaxy
    3. 25.2 Spiral Structure
    4. 25.3 The Mass of the Galaxy
    5. 25.4 The Center of the Galaxy
    6. 25.5 Stellar Populations in the Galaxy
    7. 25.6 The Formation of the Galaxy
    8. Key Terms
    9. Summary
    10. For Further Exploration
    11. Collaborative Group Activities
    12. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  27. 26 Galaxies
    1. Thinking Ahead
    2. 26.1 The Discovery of Galaxies
    3. 26.2 Types of Galaxies
    4. 26.3 Properties of Galaxies
    5. 26.4 The Extragalactic Distance Scale
    6. 26.5 The Expanding Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  28. 27 Active Galaxies, Quasars, and Supermassive Black Holes
    1. Thinking Ahead
    2. 27.1 Quasars
    3. 27.2 Supermassive Black Holes: What Quasars Really Are
    4. 27.3 Quasars as Probes of Evolution in the Universe
    5. Key Terms
    6. Summary
    7. For Further Exploration
    8. Collaborative Group Activities
    9. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  29. 28 The Evolution and Distribution of Galaxies
    1. Thinking Ahead
    2. 28.1 Observations of Distant Galaxies
    3. 28.2 Galaxy Mergers and Active Galactic Nuclei
    4. 28.3 The Distribution of Galaxies in Space
    5. 28.4 The Challenge of Dark Matter
    6. 28.5 The Formation and Evolution of Galaxies and Structure in the Universe
    7. Key Terms
    8. Summary
    9. For Further Exploration
    10. Collaborative Group Activities
    11. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  30. 29 The Big Bang
    1. Thinking Ahead
    2. 29.1 The Age of the Universe
    3. 29.2 A Model of the Universe
    4. 29.3 The Beginning of the Universe
    5. 29.4 The Cosmic Microwave Background
    6. 29.5 What Is the Universe Really Made Of?
    7. 29.6 The Inflationary Universe
    8. 29.7 The Anthropic Principle
    9. Key Terms
    10. Summary
    11. For Further Exploration
    12. Collaborative Group Activities
    13. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  31. 30 Life in the Universe
    1. Thinking Ahead
    2. 30.1 The Cosmic Context for Life
    3. 30.2 Astrobiology
    4. 30.3 Searching for Life beyond Earth
    5. 30.4 The Search for Extraterrestrial Intelligence
    6. Key Terms
    7. Summary
    8. For Further Exploration
    9. Collaborative Group Activities
    10. Exercises
      1. Review Questions
      2. Thought Questions
      3. Figuring for Yourself
  32. A | How to Study for an Introductory Astronomy Class
  33. B | Astronomy Websites, Images, and Apps
  34. C | Scientific Notation
  35. D | Units Used in Science
  36. E | Some Useful Constants for Astronomy
  37. F | Physical and Orbital Data for the Planets
  38. G | Selected Moons of the Planets
  39. H | Future Total Eclipses
  40. I | The Nearest Stars, Brown Dwarfs, and White Dwarfs
  41. J | The Brightest Twenty Stars
  42. K | The Chemical Elements
  43. L | The Constellations
  44. M | Star Chart and Sky Event Resources
  45. Index

Learning Objectives

By the end of this section, you will be able to:

  • Compare the relative temperatures of stars based on their colors
  • Understand how astronomers use color indexes to measure the temperatures of stars

Look at the beautiful picture of the stars in the Sagittarius Star Cloud shown in Figure 17.3. The stars show a multitude of colors, including red, orange, yellow, white, and blue. As we have seen, stars are not all the same color because they do not all have identical temperatures. To define color precisely, astronomers have devised quantitative methods for characterizing the color of a star and then using those colors to determine stellar temperatures. In the chapters that follow, we will provide the temperature of the stars we are describing, and this section tells you how those temperatures are determined from the colors of light the stars give off.

Hubble Space Telescope image of the Sagittarius Star Cloud. The image shows many stars of various colors, white, blue, red and yellow spread over a black background. The most common star colors in this image are red and yellow.
Figure 17.3 Sagittarius Star Cloud. This image, which was taken by the Hubble Space Telescope, shows stars in the direction toward the center of the Milky Way Galaxy. The bright stars glitter like colored jewels on a black velvet background. The color of a star indicates its temperature. Blue-white stars are much hotter than the Sun, whereas red stars are cooler. On average, the stars in this field are at a distance of about 25,000 light-years (which means it takes light 25,000 years to traverse the distance from them to us) and the width of the field is about 13.3 light-years. (credit: Hubble Heritage Team (AURA/STScI/NASA))

Color and Temperature

As we learned in The Electromagnetic Spectrum section, Wien’s law relates stellar color to stellar temperature. Blue colors dominate the visible light output of very hot stars (with much additional radiation in the ultraviolet). On the other hand, cool stars emit most of their visible light energy at red wavelengths (with more radiation coming off in the infrared) (Table 17.1). The color of a star therefore provides a measure of its intrinsic or true surface temperature (apart from the effects of reddening by interstellar dust, which will be discussed in Between the Stars: Gas and Dust in Space). Color does not depend on the distance to the object. This should be familiar to you from everyday experience. The color of a traffic signal, for example, appears the same no matter how far away it is. If we could somehow take a star, observe it, and then move it much farther away, its apparent brightness (magnitude) would change. But this change in brightness is the same for all wavelengths, and so its color would remain the same.

Example Star Colors and Corresponding Approximate Temperatures
Star Color Approximate Temperature Example
Blue 25,000 K Spica
White 10,000 K Vega
Yellow 6000 K Sun
Orange 4000 K Aldebaran
Red 3000 K Betelgeuse
Table 17.1

The hottest stars have temperatures of over 40,000 K, and the coolest stars have temperatures of about 2000 K. Our Sun’s surface temperature is about 6000 K; its peak wavelength color is a slightly greenish-yellow. In space, the Sun would look white, shining with about equal amounts of reddish and bluish wavelengths of light. It looks somewhat yellow as seen from Earth’s surface because our planet’s nitrogen molecules scatter some of the shorter (i.e., blue) wavelengths out of the beams of sunlight that reach us, leaving more long wavelength light behind. This also explains why the sky is blue: the blue sky is sunlight scattered by Earth’s atmosphere.

Color Indices

In order to specify the exact color of a star, astronomers normally measure a star’s apparent brightness through filters, each of which transmits only the light from a particular narrow band of wavelengths (colors). A crude example of a filter in everyday life is a green-colored, plastic, soft drink bottle, which, when held in front of your eyes, lets only the green colors of light through.

One commonly used set of filters in astronomy measures stellar brightness at three wavelengths corresponding to ultraviolet, blue, and yellow light. The filters are named: U (ultraviolet), B (blue), and V (visual, for yellow). These filters transmit light near the wavelengths of 360 nanometers (nm), 420 nm, and 540 nm, respectively. The brightness measured through each filter is usually expressed in magnitudes. The difference between any two of these magnitudes—say, between the blue and the visual magnitudes (B–V)—is called a color index.

By agreement among astronomers, the ultraviolet, blue, and visual magnitudes of the UBV system are adjusted to give a color index of 0 to a star with a surface temperature of about 10,000 K, such as Vega. The B–V color indexes of stars range from −0.4 for the bluest stars, with temperatures of about 40,000 K, to +2.0 for the reddest stars, with temperatures of about 2000 K. The B–V index for the Sun is about +0.65. Note that, by convention, the B–V index is always the “bluer” minus the “redder” color.

Why use a color index if it ultimately implies temperature? Because the brightness of a star through a filter is what astronomers actually measure, and we are always more comfortable when our statements have to do with measurable quantities.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy/pages/1-introduction
Citation information

© Oct 13, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.