Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Astronomy 2e

Thought Questions

Astronomy 2eThought Questions

Thought Questions

29.

Make a list of some of the many practical consequences of Maxwell’s theory of electromagnetic waves (television is one example).

30.

With what type of electromagnetic radiation would you observe:

  1. A star with a temperature of 5800 K?
  2. A gas heated to a temperature of one million K?
  3. A person on a dark night?
31.

Why is it dangerous to be exposed to X-rays but not (or at least much less) dangerous to be exposed to radio waves?

32.

Go outside on a clear night, wait 15 minutes for your eyes to adjust to the dark, and look carefully at the brightest stars. Some should look slightly red and others slightly blue. The primary factor that determines the color of a star is its temperature. Which is hotter: a blue star or a red one? Explain

33.

Water faucets are often labeled with a red dot for hot water and a blue dot for cold. Given Wien’s law, does this labeling make sense?

34.

Suppose you are standing at the exact center of a park surrounded by a circular road. An ambulance drives completely around this road, with siren blaring. How does the pitch of the siren change as it circles around you?

35.

How could you measure Earth’s orbital speed by photographing the spectrum of a star at various times throughout the year? (Hint: Suppose the star lies in the plane of Earth’s orbit.)

36.

Astronomers want to make maps of the sky showing sources of X-rays or gamma rays. Explain why those X-rays and gamma rays must be observed from above Earth’s atmosphere.

37.

The greenhouse effect can be explained easily if you understand the laws of blackbody radiation. A greenhouse gas blocks the transmission of infrared light. Given that the incoming light to Earth is sunlight with a characteristic temperature of 5800 K (which peaks in the visible part of the spectrum) and the outgoing light from Earth has a characteristic temperature of about 300 K (which peaks in the infrared part of the spectrum), explain how greenhouse gases cause Earth to warm up. As part of your answer, discuss that greenhouse gases block both incoming and outgoing infrared light. Explain why these two effects don’t simply cancel each other, leading to no net temperature change.

38.

An idealized radiating object does not reflect or scatter any radiation but instead absorbs all of the electromagnetic energy that falls on it. Can you explain why astronomers call such an object a blackbody? Keep in mind that even stars, which shine brightly in a variety of colors, are considered blackbodies. Explain why.

39.

Why are ionized gases typically only found in very high-temperature environments?

40.

Explain why each element has a unique spectrum of absorption or emission lines.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/astronomy-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/astronomy-2e/pages/1-introduction
Citation information

© Jul 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.