Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Menu
Table of contents
  1. Preface
  2. Levels of Organization
    1. 1 An Introduction to the Human Body
      1. Introduction
      2. 1.1 Overview of Anatomy and Physiology
      3. 1.2 Structural Organization of the Human Body
      4. 1.3 Functions of Human Life
      5. 1.4 Requirements for Human Life
      6. 1.5 Homeostasis
      7. 1.6 Anatomical Terminology
      8. 1.7 Medical Imaging
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 2 The Chemical Level of Organization
      1. Introduction
      2. 2.1 Elements and Atoms: The Building Blocks of Matter
      3. 2.2 Chemical Bonds
      4. 2.3 Chemical Reactions
      5. 2.4 Inorganic Compounds Essential to Human Functioning
      6. 2.5 Organic Compounds Essential to Human Functioning
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 3 The Cellular Level of Organization
      1. Introduction
      2. 3.1 The Cell Membrane
      3. 3.2 The Cytoplasm and Cellular Organelles
      4. 3.3 The Nucleus and DNA Replication
      5. 3.4 Protein Synthesis
      6. 3.5 Cell Growth and Division
      7. 3.6 Cellular Differentiation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 The Tissue Level of Organization
      1. Introduction
      2. 4.1 Types of Tissues
      3. 4.2 Epithelial Tissue
      4. 4.3 Connective Tissue Supports and Protects
      5. 4.4 Muscle Tissue and Motion
      6. 4.5 Nervous Tissue Mediates Perception and Response
      7. 4.6 Tissue Injury and Aging
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
  3. Support and Movement
    1. 5 The Integumentary System
      1. Introduction
      2. 5.1 Layers of the Skin
      3. 5.2 Accessory Structures of the Skin
      4. 5.3 Functions of the Integumentary System
      5. 5.4 Diseases, Disorders, and Injuries of the Integumentary System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 6 Bone Tissue and the Skeletal System
      1. Introduction
      2. 6.1 The Functions of the Skeletal System
      3. 6.2 Bone Classification
      4. 6.3 Bone Structure
      5. 6.4 Bone Formation and Development
      6. 6.5 Fractures: Bone Repair
      7. 6.6 Exercise, Nutrition, Hormones, and Bone Tissue
      8. 6.7 Calcium Homeostasis: Interactions of the Skeletal System and Other Organ Systems
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    3. 7 Axial Skeleton
      1. Introduction
      2. 7.1 Divisions of the Skeletal System
      3. 7.2 The Skull
      4. 7.3 The Vertebral Column
      5. 7.4 The Thoracic Cage
      6. 7.5 Embryonic Development of the Axial Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 8 The Appendicular Skeleton
      1. Introduction
      2. 8.1 The Pectoral Girdle
      3. 8.2 Bones of the Upper Limb
      4. 8.3 The Pelvic Girdle and Pelvis
      5. 8.4 Bones of the Lower Limb
      6. 8.5 Development of the Appendicular Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 9 Joints
      1. Introduction
      2. 9.1 Classification of Joints
      3. 9.2 Fibrous Joints
      4. 9.3 Cartilaginous Joints
      5. 9.4 Synovial Joints
      6. 9.5 Types of Body Movements
      7. 9.6 Anatomy of Selected Synovial Joints
      8. 9.7 Development of Joints
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    6. 10 Muscle Tissue
      1. Introduction
      2. 10.1 Overview of Muscle Tissues
      3. 10.2 Skeletal Muscle
      4. 10.3 Muscle Fiber Contraction and Relaxation
      5. 10.4 Nervous System Control of Muscle Tension
      6. 10.5 Types of Muscle Fibers
      7. 10.6 Exercise and Muscle Performance
      8. 10.7 Cardiac Muscle Tissue
      9. 10.8 Smooth Muscle
      10. 10.9 Development and Regeneration of Muscle Tissue
      11. Key Terms
      12. Chapter Review
      13. Interactive Link Questions
      14. Review Questions
      15. Critical Thinking Questions
    7. 11 The Muscular System
      1. Introduction
      2. 11.1 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
      3. 11.2 Naming Skeletal Muscles
      4. 11.3 Axial Muscles of the Head, Neck, and Back
      5. 11.4 Axial Muscles of the Abdominal Wall, and Thorax
      6. 11.5 Muscles of the Pectoral Girdle and Upper Limbs
      7. 11.6 Appendicular Muscles of the Pelvic Girdle and Lower Limbs
      8. Key Terms
      9. Chapter Review
      10. Review Questions
      11. Critical Thinking Questions
  4. Regulation, Integration, and Control
    1. 12 The Nervous System and Nervous Tissue
      1. Introduction
      2. 12.1 Basic Structure and Function of the Nervous System
      3. 12.2 Nervous Tissue
      4. 12.3 The Function of Nervous Tissue
      5. 12.4 The Action Potential
      6. 12.5 Communication Between Neurons
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 13 Anatomy of the Nervous System
      1. Introduction
      2. 13.1 The Embryologic Perspective
      3. 13.2 The Central Nervous System
      4. 13.3 Circulation and the Central Nervous System
      5. 13.4 The Peripheral Nervous System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 14 The Somatic Nervous System
      1. Introduction
      2. 14.1 Sensory Perception
      3. 14.2 Central Processing
      4. 14.3 Motor Responses
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 15 The Autonomic Nervous System
      1. Introduction
      2. 15.1 Divisions of the Autonomic Nervous System
      3. 15.2 Autonomic Reflexes and Homeostasis
      4. 15.3 Central Control
      5. 15.4 Drugs that Affect the Autonomic System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 16 The Neurological Exam
      1. Introduction
      2. 16.1 Overview of the Neurological Exam
      3. 16.2 The Mental Status Exam
      4. 16.3 The Cranial Nerve Exam
      5. 16.4 The Sensory and Motor Exams
      6. 16.5 The Coordination and Gait Exams
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 17 The Endocrine System
      1. Introduction
      2. 17.1 An Overview of the Endocrine System
      3. 17.2 Hormones
      4. 17.3 The Pituitary Gland and Hypothalamus
      5. 17.4 The Thyroid Gland
      6. 17.5 The Parathyroid Glands
      7. 17.6 The Adrenal Glands
      8. 17.7 The Pineal Gland
      9. 17.8 Gonadal and Placental Hormones
      10. 17.9 The Endocrine Pancreas
      11. 17.10 Organs with Secondary Endocrine Functions
      12. 17.11 Development and Aging of the Endocrine System
      13. Key Terms
      14. Chapter Review
      15. Interactive Link Questions
      16. Review Questions
      17. Critical Thinking Questions
  5. Fluids and Transport
    1. 18 The Cardiovascular System: Blood
      1. Introduction
      2. 18.1 An Overview of Blood
      3. 18.2 Production of the Formed Elements
      4. 18.3 Erythrocytes
      5. 18.4 Leukocytes and Platelets
      6. 18.5 Hemostasis
      7. 18.6 Blood Typing
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 19 The Cardiovascular System: The Heart
      1. Introduction
      2. 19.1 Heart Anatomy
      3. 19.2 Cardiac Muscle and Electrical Activity
      4. 19.3 Cardiac Cycle
      5. 19.4 Cardiac Physiology
      6. 19.5 Development of the Heart
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 20 The Cardiovascular System: Blood Vessels and Circulation
      1. Introduction
      2. 20.1 Structure and Function of Blood Vessels
      3. 20.2 Blood Flow, Blood Pressure, and Resistance
      4. 20.3 Capillary Exchange
      5. 20.4 Homeostatic Regulation of the Vascular System
      6. 20.5 Circulatory Pathways
      7. 20.6 Development of Blood Vessels and Fetal Circulation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 21 The Lymphatic and Immune System
      1. Introduction
      2. 21.1 Anatomy of the Lymphatic and Immune Systems
      3. 21.2 Barrier Defenses and the Innate Immune Response
      4. 21.3 The Adaptive Immune Response: T lymphocytes and Their Functional Types
      5. 21.4 The Adaptive Immune Response: B-lymphocytes and Antibodies
      6. 21.5 The Immune Response against Pathogens
      7. 21.6 Diseases Associated with Depressed or Overactive Immune Responses
      8. 21.7 Transplantation and Cancer Immunology
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  6. Energy, Maintenance, and Environmental Exchange
    1. 22 The Respiratory System
      1. Introduction
      2. 22.1 Organs and Structures of the Respiratory System
      3. 22.2 The Lungs
      4. 22.3 The Process of Breathing
      5. 22.4 Gas Exchange
      6. 22.5 Transport of Gases
      7. 22.6 Modifications in Respiratory Functions
      8. 22.7 Embryonic Development of the Respiratory System
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 23 The Digestive System
      1. Introduction
      2. 23.1 Overview of the Digestive System
      3. 23.2 Digestive System Processes and Regulation
      4. 23.3 The Mouth, Pharynx, and Esophagus
      5. 23.4 The Stomach
      6. 23.5 The Small and Large Intestines
      7. 23.6 Accessory Organs in Digestion: The Liver, Pancreas, and Gallbladder
      8. 23.7 Chemical Digestion and Absorption: A Closer Look
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 24 Metabolism and Nutrition
      1. Introduction
      2. 24.1 Overview of Metabolic Reactions
      3. 24.2 Carbohydrate Metabolism
      4. 24.3 Lipid Metabolism
      5. 24.4 Protein Metabolism
      6. 24.5 Metabolic States of the Body
      7. 24.6 Energy and Heat Balance
      8. 24.7 Nutrition and Diet
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    4. 25 The Urinary System
      1. Introduction
      2. 25.1 Physical Characteristics of Urine
      3. 25.2 Gross Anatomy of Urine Transport
      4. 25.3 Gross Anatomy of the Kidney
      5. 25.4 Microscopic Anatomy of the Kidney
      6. 25.5 Physiology of Urine Formation
      7. 25.6 Tubular Reabsorption
      8. 25.7 Regulation of Renal Blood Flow
      9. 25.8 Endocrine Regulation of Kidney Function
      10. 25.9 Regulation of Fluid Volume and Composition
      11. 25.10 The Urinary System and Homeostasis
      12. Key Terms
      13. Chapter Review
      14. Review Questions
      15. Critical Thinking Questions
    5. 26 Fluid, Electrolyte, and Acid-Base Balance
      1. Introduction
      2. 26.1 Body Fluids and Fluid Compartments
      3. 26.2 Water Balance
      4. 26.3 Electrolyte Balance
      5. 26.4 Acid-Base Balance
      6. 26.5 Disorders of Acid-Base Balance
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
  7. Human Development and the Continuity of Life
    1. 27 The Reproductive System
      1. Introduction
      2. 27.1 Anatomy and Physiology of the Male Reproductive System
      3. 27.2 Anatomy and Physiology of the Female Reproductive System
      4. 27.3 Development of the Male and Female Reproductive Systems
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 28 Development and Inheritance
      1. Introduction
      2. 28.1 Fertilization
      3. 28.2 Embryonic Development
      4. 28.3 Fetal Development
      5. 28.4 Maternal Changes During Pregnancy, Labor, and Birth
      6. 28.5 Adjustments of the Infant at Birth and Postnatal Stages
      7. 28.6 Lactation
      8. 28.7 Patterns of Inheritance
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  8. References
  9. Index
active transport
form of transport across the cell membrane that requires input of cellular energy
amphipathic
describes a molecule that exhibits a difference in polarity between its two ends, resulting in a difference in water solubility
anaphase
third stage of mitosis (and meiosis), during which sister chromatids separate into two new nuclear regions of a dividing cell
anticodon
consecutive sequence of three nucleotides on a tRNA molecule that is complementary to a specific codon on an mRNA molecule
autolysis
breakdown of cells by their own enzymatic action
autophagy
lysosomal breakdown of a cell’s own components
cell cycle
life cycle of a single cell, from its birth until its division into two new daughter cells
cell membrane
membrane surrounding all animal cells, composed of a lipid bilayer interspersed with various molecules; also known as plasma membrane
centriole
small, self-replicating organelle that provides the origin for microtubule growth and moves DNA during cell division
centromere
region of attachment for two sister chromatids
centrosome
cellular structure that organizes microtubules during cell division
channel protein
membrane-spanning protein that has an inner pore which allows the passage of one or more substances
checkpoint
progress point in the cell cycle during which certain conditions must be met in order for the cell to proceed to a subsequence phase
chromatin
substance consisting of DNA and associated proteins
chromosome
condensed version of chromatin
cilia
small appendage on certain cells formed by microtubules and modified for movement of materials across the cellular surface
cleavage furrow
contractile ring that forms around a cell during cytokinesis that pinches the cell into two halves
codon
consecutive sequence of three nucleotides on an mRNA molecule that corresponds to a specific amino acid
concentration gradient
difference in the concentration of a substance between two regions
cyclin
one of a group of proteins that function in the progression of the cell cycle
cyclin-dependent kinase (CDK)
one of a group of enzymes associated with cyclins that help them perform their functions
cytokinesis
final stage in cell division, where the cytoplasm divides to form two separate daughter cells
cytoplasm
internal material between the cell membrane and nucleus of a cell, mainly consisting of a water-based fluid called cytosol, within which are all the other organelles and cellular solute and suspended materials
cytoskeleton
“skeleton” of a cell; formed by rod-like proteins that support the cell’s shape and provide, among other functions, locomotive abilities
cytosol
clear, semi-fluid medium of the cytoplasm, made up mostly of water
diffusion
movement of a substance from an area of higher concentration to one of lower concentration
diploid
condition marked by the presence of a double complement of genetic material (two sets of chromosomes, one set inherited from each of two parents)
DNA polymerase
enzyme that functions in adding new nucleotides to a growing strand of DNA during DNA replication
DNA replication
process of duplicating a molecule of DNA
electrical gradient
difference in the electrical charge (potential) between two regions
endocytosis
import of material into the cell by formation of a membrane-bound vesicle
endoplasmic reticulum (ER)
cellular organelle that consists of interconnected membrane-bound tubules, which may or may not be associated with ribosomes (rough type or smooth type, respectively)
exocytosis
export of a substance out of a cell by formation of a membrane-bound vesicle
exon
one of the coding regions of an mRNA molecule that remain after splicing
extracellular fluid (ECF)
fluid exterior to cells; includes the interstitial fluid, blood plasma, and fluid found in other reservoirs in the body
facilitated diffusion
diffusion of a substance with the aid of a membrane protein
flagellum
appendage on certain cells formed by microtubules and modified for movement
G0 phase
phase of the cell cycle, usually entered from the G1 phase; characterized by long or permanent periods where the cell does not move forward into the DNA synthesis phase
G1 phase
first phase of the cell cycle, after a new cell is born
G2 phase
third phase of the cell cycle, after the DNA synthesis phase
gene
functional length of DNA that provides the genetic information necessary to build a protein
gene expression
active interpretation of the information coded in a gene to produce a functional gene product
genome
entire complement of an organism’s DNA; found within virtually every cell
glycocalyx
coating of sugar molecules that surrounds the cell membrane
glycoprotein
protein that has one or more carbohydrates attached
Golgi apparatus
cellular organelle formed by a series of flattened, membrane-bound sacs that functions in protein modification, tagging, packaging, and transport
helicase
enzyme that functions to separate the two DNA strands of a double helix during DNA replication
histone
family of proteins that associate with DNA in the nucleus to form chromatin
homologous
describes two copies of the same chromosome (not identical), one inherited from each parent
hydrophilic
describes a substance or structure attracted to water
hydrophobic
describes a substance or structure repelled by water
hypertonic
describes a solution concentration that is higher than a reference concentration
hypotonic
describes a solution concentration that is lower than a reference concentration
integral protein
membrane-associated protein that spans the entire width of the lipid bilayer
intermediate filament
type of cytoskeletal filament made of keratin, characterized by an intermediate thickness, and playing a role in resisting cellular tension
interphase
entire life cycle of a cell, excluding mitosis
interstitial fluid (IF)
fluid in the small spaces between cells not contained within blood vessels
intracellular fluid (ICF)
fluid in the cytosol of cells
intron
non-coding regions of a pre-mRNA transcript that may be removed during splicing
isotonic
describes a solution concentration that is the same as a reference concentration
kinetochore
region of a centromere where microtubules attach to a pair of sister chromatids
ligand
molecule that binds with specificity to a specific receptor molecule
lysosome
membrane-bound cellular organelle originating from the Golgi apparatus and containing digestive enzymes
messenger RNA (mRNA)
nucleotide molecule that serves as an intermediate in the genetic code between DNA and protein
metaphase
second stage of mitosis (and meiosis), characterized by the linear alignment of sister chromatids in the center of the cell
metaphase plate
linear alignment of sister chromatids in the center of the cell, which takes place during metaphase
microfilament
the thinnest of the cytoskeletal filaments; composed of actin subunits that function in muscle contraction and cellular structural support
microtubule
the thickest of the cytoskeletal filaments, composed of tubulin subunits that function in cellular movement and structural support
mitochondrion
one of the cellular organelles bound by a double lipid bilayer that function primarily in the production of cellular energy (ATP)
mitosis
division of genetic material, during which the cell nucleus breaks down and two new, fully functional, nuclei are formed
mitotic phase
phase of the cell cycle in which a cell undergoes mitosis
mitotic spindle
network of microtubules, originating from centrioles, that arranges and pulls apart chromosomes during mitosis
multipotent
describes the condition of being able to differentiate into different types of cells within a given cell lineage or small number of lineages, such as a red blood cell or white blood cell
mutation
change in the nucleotide sequence in a gene within a cell’s DNA
nuclear envelope
membrane that surrounds the nucleus; consisting of a double lipid-bilayer
nuclear pore
one of the small, protein-lined openings found scattered throughout the nuclear envelope
nucleolus
small region of the nucleus that functions in ribosome synthesis
nucleosome
unit of chromatin consisting of a DNA strand wrapped around histone proteins
nucleus
cell’s central organelle; contains the cell’s DNA
oligopotent
describes the condition of being more specialized than multipotency; the condition of being able to differentiate into one of a few possible cell types
organelle
any of several different types of membrane-enclosed specialized structures in the cell that perform specific functions for the cell
osmosis
diffusion of water molecules down their concentration gradient across a selectively permeable membrane
passive transport
form of transport across the cell membrane that does not require input of cellular energy
peripheral protein
membrane-associated protein that does not span the width of the lipid bilayer, but is attached peripherally to integral proteins, membrane lipids, or other components of the membrane
peroxisome
membrane-bound organelle that contains enzymes primarily responsible for detoxifying harmful substances
phagocytosis
endocytosis of large particles
pinocytosis
endocytosis of fluid
pluripotent
describes the condition of being able to differentiate into a large variety of cell types
polypeptide
chain of amino acids linked by peptide bonds
polyribosome
simultaneous translation of a single mRNA transcript by multiple ribosomes
promoter
region of DNA that signals transcription to begin at that site within the gene
prophase
first stage of mitosis (and meiosis), characterized by breakdown of the nuclear envelope and condensing of the chromatin to form chromosomes
proteome
full complement of proteins produced by a cell (determined by the cell’s specific gene expression)
reactive oxygen species (ROS)
a group of extremely reactive peroxides and oxygen-containing radicals that may contribute to cellular damage
receptor
protein molecule that contains a binding site for another specific molecule (called a ligand)
receptor-mediated endocytosis
endocytosis of ligands attached to membrane-bound receptors
ribosomal RNA (rRNA)
RNA that makes up the subunits of a ribosome
ribosome
cellular organelle that functions in protein synthesis
RNA polymerase
enzyme that unwinds DNA and then adds new nucleotides to a growing strand of RNA for the transcription phase of protein synthesis
S phase
stage of the cell cycle during which DNA replication occurs
selective permeability
feature of any barrier that allows certain substances to cross but excludes others
sister chromatid
one of a pair of identical chromosomes, formed during DNA replication
sodium-potassium pump
(also, Na+/K+ ATP-ase) membrane-embedded protein pump that uses ATP to move Na+ out of a cell and K+ into the cell
somatic cell
all cells of the body excluding gamete cells
spliceosome
complex of enzymes that serves to splice out the introns of a pre-mRNA transcript
splicing
the process of modifying a pre-mRNA transcript by removing certain, typically non-coding, regions
stem cell
cell that is oligo-, multi-, or pleuripotent that has the ability to produce additional stem cells rather than becoming further specialized
telophase
final stage of mitosis (and meiosis), preceding cytokinesis, characterized by the formation of two new daughter nuclei
totipotent
embryonic cells that have the ability to differentiate into any type of cell and organ in the body
transcription
process of producing an mRNA molecule that is complementary to a particular gene of DNA
transcription factor
one of the proteins that regulate the transcription of genes
transfer RNA (tRNA)
molecules of RNA that serve to bring amino acids to a growing polypeptide strand and properly place them into the sequence
translation
process of producing a protein from the nucleotide sequence code of an mRNA transcript
triplet
consecutive sequence of three nucleotides on a DNA molecule that, when transcribed into an mRNA codon, corresponds to a particular amino acid
unipotent
describes the condition of being committed to a single specialized cell type
vesicle
membrane-bound structure that contains materials within or outside of the cell
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
Citation information

© Jan 27, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.