Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. Unit 1: Levels of Organization
    1. 1 An Introduction to the Human Body
      1. Introduction
      2. 1.1 Overview of Anatomy and Physiology
      3. 1.2 Structural Organization of the Human Body
      4. 1.3 Functions of Human Life
      5. 1.4 Requirements for Human Life
      6. 1.5 Homeostasis
      7. 1.6 Anatomical Terminology
      8. 1.7 Medical Imaging
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 2 The Chemical Level of Organization
      1. Introduction
      2. 2.1 Elements and Atoms: The Building Blocks of Matter
      3. 2.2 Chemical Bonds
      4. 2.3 Chemical Reactions
      5. 2.4 Inorganic Compounds Essential to Human Functioning
      6. 2.5 Organic Compounds Essential to Human Functioning
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 3 The Cellular Level of Organization
      1. Introduction
      2. 3.1 The Cell Membrane
      3. 3.2 The Cytoplasm and Cellular Organelles
      4. 3.3 The Nucleus and DNA Replication
      5. 3.4 Protein Synthesis
      6. 3.5 Cell Growth and Division
      7. 3.6 Cellular Differentiation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 The Tissue Level of Organization
      1. Introduction
      2. 4.1 Types of Tissues
      3. 4.2 Epithelial Tissue
      4. 4.3 Connective Tissue Supports and Protects
      5. 4.4 Muscle Tissue and Motion
      6. 4.5 Nervous Tissue Mediates Perception and Response
      7. 4.6 Tissue Injury and Aging
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
  3. Unit 2: Support and Movement
    1. 5 The Integumentary System
      1. Introduction
      2. 5.1 Layers of the Skin
      3. 5.2 Accessory Structures of the Skin
      4. 5.3 Functions of the Integumentary System
      5. 5.4 Diseases, Disorders, and Injuries of the Integumentary System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 6 Bone Tissue and the Skeletal System
      1. Introduction
      2. 6.1 The Functions of the Skeletal System
      3. 6.2 Bone Classification
      4. 6.3 Bone Structure
      5. 6.4 Bone Formation and Development
      6. 6.5 Fractures: Bone Repair
      7. 6.6 Exercise, Nutrition, Hormones, and Bone Tissue
      8. 6.7 Calcium Homeostasis: Interactions of the Skeletal System and Other Organ Systems
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    3. 7 Axial Skeleton
      1. Introduction
      2. 7.1 Divisions of the Skeletal System
      3. 7.2 The Skull
      4. 7.3 The Vertebral Column
      5. 7.4 The Thoracic Cage
      6. 7.5 Embryonic Development of the Axial Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 8 The Appendicular Skeleton
      1. Introduction
      2. 8.1 The Pectoral Girdle
      3. 8.2 Bones of the Upper Limb
      4. 8.3 The Pelvic Girdle and Pelvis
      5. 8.4 Bones of the Lower Limb
      6. 8.5 Development of the Appendicular Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 9 Joints
      1. Introduction
      2. 9.1 Classification of Joints
      3. 9.2 Fibrous Joints
      4. 9.3 Cartilaginous Joints
      5. 9.4 Synovial Joints
      6. 9.5 Types of Body Movements
      7. 9.6 Anatomy of Selected Synovial Joints
      8. 9.7 Development of Joints
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    6. 10 Muscle Tissue
      1. Introduction
      2. 10.1 Overview of Muscle Tissues
      3. 10.2 Skeletal Muscle
      4. 10.3 Muscle Fiber Contraction and Relaxation
      5. 10.4 Nervous System Control of Muscle Tension
      6. 10.5 Types of Muscle Fibers
      7. 10.6 Exercise and Muscle Performance
      8. 10.7 Cardiac Muscle Tissue
      9. 10.8 Smooth Muscle
      10. 10.9 Development and Regeneration of Muscle Tissue
      11. Key Terms
      12. Chapter Review
      13. Interactive Link Questions
      14. Review Questions
      15. Critical Thinking Questions
    7. 11 The Muscular System
      1. Introduction
      2. 11.1 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
      3. 11.2 Naming Skeletal Muscles
      4. 11.3 Axial Muscles of the Head, Neck, and Back
      5. 11.4 Axial Muscles of the Abdominal Wall, and Thorax
      6. 11.5 Muscles of the Pectoral Girdle and Upper Limbs
      7. 11.6 Appendicular Muscles of the Pelvic Girdle and Lower Limbs
      8. Key Terms
      9. Chapter Review
      10. Review Questions
      11. Critical Thinking Questions
  4. Unit 3: Regulation, Integration, and Control
    1. 12 The Nervous System and Nervous Tissue
      1. Introduction
      2. 12.1 Basic Structure and Function of the Nervous System
      3. 12.2 Nervous Tissue
      4. 12.3 The Function of Nervous Tissue
      5. 12.4 The Action Potential
      6. 12.5 Communication Between Neurons
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 13 Anatomy of the Nervous System
      1. Introduction
      2. 13.1 The Embryologic Perspective
      3. 13.2 The Central Nervous System
      4. 13.3 Circulation and the Central Nervous System
      5. 13.4 The Peripheral Nervous System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 14 The Somatic Nervous System
      1. Introduction
      2. 14.1 Sensory Perception
      3. 14.2 Central Processing
      4. 14.3 Motor Responses
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 15 The Autonomic Nervous System
      1. Introduction
      2. 15.1 Divisions of the Autonomic Nervous System
      3. 15.2 Autonomic Reflexes and Homeostasis
      4. 15.3 Central Control
      5. 15.4 Drugs that Affect the Autonomic System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 16 The Neurological Exam
      1. Introduction
      2. 16.1 Overview of the Neurological Exam
      3. 16.2 The Mental Status Exam
      4. 16.3 The Cranial Nerve Exam
      5. 16.4 The Sensory and Motor Exams
      6. 16.5 The Coordination and Gait Exams
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 17 The Endocrine System
      1. Introduction
      2. 17.1 An Overview of the Endocrine System
      3. 17.2 Hormones
      4. 17.3 The Pituitary Gland and Hypothalamus
      5. 17.4 The Thyroid Gland
      6. 17.5 The Parathyroid Glands
      7. 17.6 The Adrenal Glands
      8. 17.7 The Pineal Gland
      9. 17.8 Gonadal and Placental Hormones
      10. 17.9 The Endocrine Pancreas
      11. 17.10 Organs with Secondary Endocrine Functions
      12. 17.11 Development and Aging of the Endocrine System
      13. Key Terms
      14. Chapter Review
      15. Interactive Link Questions
      16. Review Questions
      17. Critical Thinking Questions
  5. Unit 4: Fluids and Transport
    1. 18 The Cardiovascular System: Blood
      1. Introduction
      2. 18.1 An Overview of Blood
      3. 18.2 Production of the Formed Elements
      4. 18.3 Erythrocytes
      5. 18.4 Leukocytes and Platelets
      6. 18.5 Hemostasis
      7. 18.6 Blood Typing
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 19 The Cardiovascular System: The Heart
      1. Introduction
      2. 19.1 Heart Anatomy
      3. 19.2 Cardiac Muscle and Electrical Activity
      4. 19.3 Cardiac Cycle
      5. 19.4 Cardiac Physiology
      6. 19.5 Development of the Heart
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 20 The Cardiovascular System: Blood Vessels and Circulation
      1. Introduction
      2. 20.1 Structure and Function of Blood Vessels
      3. 20.2 Blood Flow, Blood Pressure, and Resistance
      4. 20.3 Capillary Exchange
      5. 20.4 Homeostatic Regulation of the Vascular System
      6. 20.5 Circulatory Pathways
      7. 20.6 Development of Blood Vessels and Fetal Circulation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 21 The Lymphatic and Immune System
      1. Introduction
      2. 21.1 Anatomy of the Lymphatic and Immune Systems
      3. 21.2 Barrier Defenses and the Innate Immune Response
      4. 21.3 The Adaptive Immune Response: T lymphocytes and Their Functional Types
      5. 21.4 The Adaptive Immune Response: B-lymphocytes and Antibodies
      6. 21.5 The Immune Response against Pathogens
      7. 21.6 Diseases Associated with Depressed or Overactive Immune Responses
      8. 21.7 Transplantation and Cancer Immunology
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  6. Unit 5: Energy, Maintenance, and Environmental Exchange
    1. 22 The Respiratory System
      1. Introduction
      2. 22.1 Organs and Structures of the Respiratory System
      3. 22.2 The Lungs
      4. 22.3 The Process of Breathing
      5. 22.4 Gas Exchange
      6. 22.5 Transport of Gases
      7. 22.6 Modifications in Respiratory Functions
      8. 22.7 Embryonic Development of the Respiratory System
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 23 The Digestive System
      1. Introduction
      2. 23.1 Overview of the Digestive System
      3. 23.2 Digestive System Processes and Regulation
      4. 23.3 The Mouth, Pharynx, and Esophagus
      5. 23.4 The Stomach
      6. 23.5 The Small and Large Intestines
      7. 23.6 Accessory Organs in Digestion: The Liver, Pancreas, and Gallbladder
      8. 23.7 Chemical Digestion and Absorption: A Closer Look
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 24 Metabolism and Nutrition
      1. Introduction
      2. 24.1 Overview of Metabolic Reactions
      3. 24.2 Carbohydrate Metabolism
      4. 24.3 Lipid Metabolism
      5. 24.4 Protein Metabolism
      6. 24.5 Metabolic States of the Body
      7. 24.6 Energy and Heat Balance
      8. 24.7 Nutrition and Diet
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    4. 25 The Urinary System
      1. Introduction
      2. 25.1 Physical Characteristics of Urine
      3. 25.2 Gross Anatomy of Urine Transport
      4. 25.3 Gross Anatomy of the Kidney
      5. 25.4 Microscopic Anatomy of the Kidney
      6. 25.5 Physiology of Urine Formation
      7. 25.6 Tubular Reabsorption
      8. 25.7 Regulation of Renal Blood Flow
      9. 25.8 Endocrine Regulation of Kidney Function
      10. 25.9 Regulation of Fluid Volume and Composition
      11. 25.10 The Urinary System and Homeostasis
      12. Key Terms
      13. Chapter Review
      14. Review Questions
      15. Critical Thinking Questions
    5. 26 Fluid, Electrolyte, and Acid-Base Balance
      1. Introduction
      2. 26.1 Body Fluids and Fluid Compartments
      3. 26.2 Water Balance
      4. 26.3 Electrolyte Balance
      5. 26.4 Acid-Base Balance
      6. 26.5 Disorders of Acid-Base Balance
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
  7. Unit 6: Human Development and the Continuity of Life
    1. 27 The Reproductive System
      1. Introduction
      2. 27.1 Anatomy and Physiology of the Male Reproductive System
      3. 27.2 Anatomy and Physiology of the Female Reproductive System
      4. 27.3 Development of the Male and Female Reproductive Systems
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 28 Development and Inheritance
      1. Introduction
      2. 28.1 Fertilization
      3. 28.2 Embryonic Development
      4. 28.3 Fetal Development
      5. 28.4 Maternal Changes During Pregnancy, Labor, and Birth
      6. 28.5 Adjustments of the Infant at Birth and Postnatal Stages
      7. 28.6 Lactation
      8. 28.7 Patterns of Inheritance
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  8. References
  9. Index
acclimatization
process of adjustment that the respiratory system makes due to chronic exposure to high altitudes
acute mountain sickness (AMS)
condition that occurs a result of acute exposure to high altitude due to a low partial pressure of oxygen
ala
(plural = alae) small, flaring structure of a nostril that forms the lateral side of the nares
alar cartilage
cartilage that supports the apex of the nose and helps shape the nares; it is connected to the septal cartilage and connective tissue of the alae
alveolar dead space
air space within alveoli that are unable to participate in gas exchange
alveolar duct
small tube that leads from the terminal bronchiole to the respiratory bronchiole and is the point of attachment for alveoli
alveolar macrophage
immune system cell of the alveolus that removes debris and pathogens
alveolar pore
opening that allows airflow between neighboring alveoli
alveolar sac
cluster of alveoli
alveolus
small, grape-like sac that performs gas exchange in the lungs
anatomical dead space
air space present in the airway that never reaches the alveoli and therefore never participates in gas exchange
apex
tip of the external nose
apneustic center
network of neurons within the pons that stimulate the neurons in the dorsal respiratory group; controls the depth of inspiration
atmospheric pressure
amount of force that is exerted by gases in the air surrounding any given surface
Bohr effect
relationship between blood pH and oxygen dissociation from hemoglobin
Boyle’s law
relationship between volume and pressure as described by the formula: P1V1 = P2V2
bridge
portion of the external nose that lies in the area of the nasal bones
bronchial bud
structure in the developing embryo that forms when the laryngotracheal bud extends and branches to form two bulbous structures
bronchial tree
collective name for the multiple branches of the bronchi and bronchioles of the respiratory system
bronchiole
branch of bronchi that are 1 mm or less in diameter and terminate at alveolar sacs
bronchoconstriction
decrease in the size of the bronchiole due to contraction of the muscular wall
bronchodilation
increase in the size of the bronchiole due to contraction of the muscular wall
bronchus
tube connected to the trachea that branches into many subsidiaries and provides a passageway for air to enter and leave the lungs
carbaminohemoglobin
bound form of hemoglobin and carbon dioxide
carbonic anhydrase (CA)
enzyme that catalyzes the reaction that causes carbon dioxide and water to form carbonic acid
cardiac notch
indentation on the surface of the left lung that allows space for the heart
central chemoreceptor
one of the specialized receptors that are located in the brain that sense changes in hydrogen ion, oxygen, or carbon dioxide concentrations in the brain
chloride shift
facilitated diffusion that exchanges bicarbonate (HCO3) with chloride (Cl) ions
conducting zone
region of the respiratory system that includes the organs and structures that provide passageways for air and are not directly involved in gas exchange
cricoid cartilage
portion of the larynx composed of a ring of cartilage with a wide posterior region and a thinner anterior region; attached to the esophagus
Dalton’s law
statement of the principle that a specific gas type in a mixture exerts its own pressure, as if that specific gas type was not part of a mixture of gases
dorsal respiratory group (DRG)
region of the medulla oblongata that stimulates the contraction of the diaphragm and intercostal muscles to induce inspiration
dorsum nasi
intermediate portion of the external nose that connects the bridge to the apex and is supported by the nasal bone
epiglottis
leaf-shaped piece of elastic cartilage that is a portion of the larynx that swings to close the trachea during swallowing
expiration
(also, exhalation) process that causes the air to leave the lungs
expiratory reserve volume (ERV)
amount of air that can be forcefully exhaled after a normal tidal exhalation
external nose
region of the nose that is easily visible to others
external respiration
gas exchange that occurs in the alveoli
fauces
portion of the posterior oral cavity that connects the oral cavity to the oropharynx
fibroelastic membrane
specialized membrane that connects the ends of the C-shape cartilage in the trachea; contains smooth muscle fibers
forced breathing
(also, hyperpnea) mode of breathing that occurs during exercise or by active thought that requires muscle contraction for both inspiration and expiration
foregut
endoderm of the embryo towards the head region
functional residual capacity (FRC)
sum of ERV and RV, which is the amount of air that remains in the lungs after a tidal expiration
glottis
opening between the vocal folds through which air passes when producing speech
Haldane effect
relationship between the partial pressure of oxygen and the affinity of hemoglobin for carbon dioxide
Henry’s law
statement of the principle that the concentration of gas in a liquid is directly proportional to the solubility and partial pressure of that gas
hilum
concave structure on the mediastinal surface of the lungs where blood vessels, lymphatic vessels, nerves, and a bronchus enter the lung
hyperpnea
increased rate and depth of ventilation due to an increase in oxygen demand that does not significantly alter blood oxygen or carbon dioxide levels
hyperventilation
increased ventilation rate that leads to abnormally low blood carbon dioxide levels and high (alkaline) blood pH
inspiration
(also, inhalation) process that causes air to enter the lungs
inspiratory capacity (IC)
sum of the TV and IRV, which is the amount of air that can maximally be inhaled past a tidal expiration
inspiratory reserve volume (IRV)
amount of air that enters the lungs due to deep inhalation past the tidal volume
internal respiration
gas exchange that occurs at the level of body tissues
intra-alveolar pressure
(intrapulmonary pressure) pressure of the air within the alveoli
intrapleural pressure
pressure of the air within the pleural cavity
laryngeal prominence
region where the two lamina of the thyroid cartilage join, forming a protrusion known as “Adam’s apple”
laryngopharynx
portion of the pharynx bordered by the oropharynx superiorly and esophagus and trachea inferiorly; serves as a route for both air and food
laryngotracheal
bud forms from the lung bud, has a tracheal end and bulbous bronchial buds at the distal end
larynx
cartilaginous structure that produces the voice, prevents food and beverages from entering the trachea, and regulates the volume of air that enters and leaves the lungs
lingual tonsil
lymphoid tissue located at the base of the tongue
lung
organ of the respiratory system that performs gas exchange
lung bud
median dome that forms from the endoderm of the foregut
meatus
one of three recesses (superior, middle, and inferior) in the nasal cavity attached to the conchae that increase the surface area of the nasal cavity
naris
(plural = nares) opening of the nostrils
nasal bone
bone of the skull that lies under the root and bridge of the nose and is connected to the frontal and maxillary bones
nasal septum
wall composed of bone and cartilage that separates the left and right nasal cavities
nasopharynx
portion of the pharynx flanked by the conchae and oropharynx that serves as an airway
olfactory pit
invaginated ectodermal tissue in the anterior portion of the head region of an embryo that will form the nasal cavity
oropharynx
portion of the pharynx flanked by the nasopharynx, oral cavity, and laryngopharynx that is a passageway for both air and food
oxygen–hemoglobin dissociation curve
graph that describes the relationship of partial pressure to the binding and disassociation of oxygen to and from heme
oxyhemoglobin
(Hb–O2) bound form of hemoglobin and oxygen
palatine tonsil
one of the paired structures composed of lymphoid tissue located anterior to the uvula at the roof of isthmus of the fauces
paranasal sinus
one of the cavities within the skull that is connected to the conchae that serve to warm and humidify incoming air, produce mucus, and lighten the weight of the skull; consists of frontal, maxillary, sphenoidal, and ethmoidal sinuses
parietal pleura
outermost layer of the pleura that connects to the thoracic wall, mediastinum, and diaphragm
partial pressure
force exerted by each gas in a mixture of gases
peripheral chemoreceptor
one of the specialized receptors located in the aortic arch and carotid arteries that sense changes in pH, carbon dioxide, or oxygen blood levels
pharyngeal tonsil
structure composed of lymphoid tissue located in the nasopharynx
pharynx
region of the conducting zone that forms a tube of skeletal muscle lined with respiratory epithelium; located between the nasal conchae and the esophagus and trachea
philtrum
concave surface of the face that connects the apex of the nose to the top lip
pleural cavity
space between the visceral and parietal pleurae
pleural fluid
substance that acts as a lubricant for the visceral and parietal layers of the pleura during the movement of breathing
pneumotaxic center
network of neurons within the pons that inhibit the activity of the neurons in the dorsal respiratory group; controls rate of breathing
pulmonary artery
artery that arises from the pulmonary trunk and carries deoxygenated, arterial blood to the alveoli
pulmonary plexus
network of autonomic nervous system fibers found near the hilum of the lung
pulmonary surfactant
substance composed of phospholipids and proteins that reduces the surface tension of the alveoli; made by type II alveolar cells
pulmonary ventilation
exchange of gases between the lungs and the atmosphere; breathing
quiet breathing
(also, eupnea) mode of breathing that occurs at rest and does not require the cognitive thought of the individual
residual volume (RV)
amount of air that remains in the lungs after maximum exhalation
respiratory bronchiole
specific type of bronchiole that leads to alveolar sacs
respiratory cycle
one sequence of inspiration and expiration
respiratory epithelium
ciliated lining of much of the conducting zone that is specialized to remove debris and pathogens, and produce mucus
respiratory membrane
alveolar and capillary wall together, which form an air-blood barrier that facilitates the simple diffusion of gases
respiratory rate
total number of breaths taken each minute
respiratory volume
varying amounts of air within the lung at a given time
respiratory zone
includes structures of the respiratory system that are directly involved in gas exchange
root
region of the external nose between the eyebrows
thoracic wall compliance
ability of the thoracic wall to stretch while under pressure
thyroid cartilage
largest piece of cartilage that makes up the larynx and consists of two lamina
tidal volume (TV)
amount of air that normally enters the lungs during quiet breathing
total dead space
sum of the anatomical dead space and alveolar dead space
total lung capacity (TLC)
total amount of air that can be held in the lungs; sum of TV, ERV, IRV, and RV
total pressure
sum of all the partial pressures of a gaseous mixture
trachea
tube composed of cartilaginous rings and supporting tissue that connects the lung bronchi and the larynx; provides a route for air to enter and exit the lung
trachealis muscle
smooth muscle located in the fibroelastic membrane of the trachea
transpulmonary pressure
pressure difference between the intrapleural and intra-alveolar pressures
true vocal cord
one of the pair of folded, white membranes that have a free inner edge that oscillates as air passes through to produce sound
type I alveolar cell
squamous epithelial cells that are the major cell type in the alveolar wall; highly permeable to gases
type II alveolar cell
cuboidal epithelial cells that are the minor cell type in the alveolar wall; secrete pulmonary surfactant
ventilation
movement of air into and out of the lungs; consists of inspiration and expiration
ventral respiratory group (VRG)
region of the medulla oblongata that stimulates the contraction of the accessory muscles involved in respiration to induce forced inspiration and expiration
vestibular fold
part of the folded region of the glottis composed of mucous membrane; supports the epiglottis during swallowing
visceral pleura
innermost layer of the pleura that is superficial to the lungs and extends into the lung fissures
vital capacity (VC)
sum of TV, ERV, and IRV, which is all the volumes that participate in gas exchange
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
Citation information

© Apr 25, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.