Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry


Algebra and TrigonometryPreface

Table of contents
  1. Preface
  2. 1 Prerequisites
    1. Introduction to Prerequisites
    2. 1.1 Real Numbers: Algebra Essentials
    3. 1.2 Exponents and Scientific Notation
    4. 1.3 Radicals and Rational Exponents
    5. 1.4 Polynomials
    6. 1.5 Factoring Polynomials
    7. 1.6 Rational Expressions
    8. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Equations and Inequalities
    1. Introduction to Equations and Inequalities
    2. 2.1 The Rectangular Coordinate Systems and Graphs
    3. 2.2 Linear Equations in One Variable
    4. 2.3 Models and Applications
    5. 2.4 Complex Numbers
    6. 2.5 Quadratic Equations
    7. 2.6 Other Types of Equations
    8. 2.7 Linear Inequalities and Absolute Value Inequalities
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Functions
    1. Introduction to Functions
    2. 3.1 Functions and Function Notation
    3. 3.2 Domain and Range
    4. 3.3 Rates of Change and Behavior of Graphs
    5. 3.4 Composition of Functions
    6. 3.5 Transformation of Functions
    7. 3.6 Absolute Value Functions
    8. 3.7 Inverse Functions
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Linear Functions
    1. Introduction to Linear Functions
    2. 4.1 Linear Functions
    3. 4.2 Modeling with Linear Functions
    4. 4.3 Fitting Linear Models to Data
    5. Chapter Review
      1. Key Terms
      2. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Polynomial and Rational Functions
    1. Introduction to Polynomial and Rational Functions
    2. 5.1 Quadratic Functions
    3. 5.2 Power Functions and Polynomial Functions
    4. 5.3 Graphs of Polynomial Functions
    5. 5.4 Dividing Polynomials
    6. 5.5 Zeros of Polynomial Functions
    7. 5.6 Rational Functions
    8. 5.7 Inverses and Radical Functions
    9. 5.8 Modeling Using Variation
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Exponential and Logarithmic Functions
    1. Introduction to Exponential and Logarithmic Functions
    2. 6.1 Exponential Functions
    3. 6.2 Graphs of Exponential Functions
    4. 6.3 Logarithmic Functions
    5. 6.4 Graphs of Logarithmic Functions
    6. 6.5 Logarithmic Properties
    7. 6.6 Exponential and Logarithmic Equations
    8. 6.7 Exponential and Logarithmic Models
    9. 6.8 Fitting Exponential Models to Data
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 The Unit Circle: Sine and Cosine Functions
    1. Introduction to The Unit Circle: Sine and Cosine Functions
    2. 7.1 Angles
    3. 7.2 Right Triangle Trigonometry
    4. 7.3 Unit Circle
    5. 7.4 The Other Trigonometric Functions
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    7. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Periodic Functions
    1. Introduction to Periodic Functions
    2. 8.1 Graphs of the Sine and Cosine Functions
    3. 8.2 Graphs of the Other Trigonometric Functions
    4. 8.3 Inverse Trigonometric Functions
    5. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Trigonometric Identities and Equations
    1. Introduction to Trigonometric Identities and Equations
    2. 9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
    3. 9.2 Sum and Difference Identities
    4. 9.3 Double-Angle, Half-Angle, and Reduction Formulas
    5. 9.4 Sum-to-Product and Product-to-Sum Formulas
    6. 9.5 Solving Trigonometric Equations
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Further Applications of Trigonometry
    1. Introduction to Further Applications of Trigonometry
    2. 10.1 Non-right Triangles: Law of Sines
    3. 10.2 Non-right Triangles: Law of Cosines
    4. 10.3 Polar Coordinates
    5. 10.4 Polar Coordinates: Graphs
    6. 10.5 Polar Form of Complex Numbers
    7. 10.6 Parametric Equations
    8. 10.7 Parametric Equations: Graphs
    9. 10.8 Vectors
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  12. 11 Systems of Equations and Inequalities
    1. Introduction to Systems of Equations and Inequalities
    2. 11.1 Systems of Linear Equations: Two Variables
    3. 11.2 Systems of Linear Equations: Three Variables
    4. 11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
    5. 11.4 Partial Fractions
    6. 11.5 Matrices and Matrix Operations
    7. 11.6 Solving Systems with Gaussian Elimination
    8. 11.7 Solving Systems with Inverses
    9. 11.8 Solving Systems with Cramer's Rule
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  13. 12 Analytic Geometry
    1. Introduction to Analytic Geometry
    2. 12.1 The Ellipse
    3. 12.2 The Hyperbola
    4. 12.3 The Parabola
    5. 12.4 Rotation of Axes
    6. 12.5 Conic Sections in Polar Coordinates
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  14. 13 Sequences, Probability, and Counting Theory
    1. Introduction to Sequences, Probability and Counting Theory
    2. 13.1 Sequences and Their Notations
    3. 13.2 Arithmetic Sequences
    4. 13.3 Geometric Sequences
    5. 13.4 Series and Their Notations
    6. 13.5 Counting Principles
    7. 13.6 Binomial Theorem
    8. 13.7 Probability
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  15. A | Proofs, Identities, and Toolkit Functions
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index

Welcome to Algebra and Trigonometry, an OpenStax resource. This textbook was written to increase student access to high-quality learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first openly licensed college textbook was published in 2012, and our library has since scaled to over 20 books for college and AP courses used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning outcomes through personalized educational paths, is being piloted in college courses throughout the country. Through our partnerships with philanthropic foundations and our alliance with other educational resource organizations, OpenStax is breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax Resources


Algebra and Trigonometry is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on for more information.


All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on Subject matter experts review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes on your book page on


You can access this textbook for free in web view or PDF through, and for a low cost in print.

About Algebra and Trigonometry

Algebra and Trigonometry provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra and trigonometry course. The modular approach and the richness of content ensures that the book meets the needs of a variety of courses. Algebra and Trigonometry offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they’ve learned.

Coverage and Scope

In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction.

Chapters 1 and 2 provide both a review and foundation for study of functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that needs the prerequisite skills built into the course.

  • Chapter 1: Prerequisites
  • Chapter 2: Equations and Inequalities

Chapters 3-6: The Algebraic Functions

  • Chapter 3: Functions
  • Chapter 4: Linear Functions
  • Chapter 5: Polynomial and Rational Functions
  • Chapter 6: Exponential and Logarithm Functions

Chapters 7-10: A Study of Trigonometry

  • Chapter 7: The Unit Circle: Sine and Cosine Functions
  • Chapter 8: Periodic Functions
  • Chapter 9: Trigonometric Identities and Equations
  • Chapter 10: Further Applications of Trigonometry

Chapters 11-13: Further Study in Algebra and Trigonometry

  • Chapter 11: Systems of Equations and Inequalities
  • Chapter 12: Analytic Geometry
  • Chapter 13: Sequences, Probability, and Counting Theory

Development Overview

OpenStax Algebra and Trigonometry is the product of a collaborative effort by a group of dedicated authors, editors, and instructors whose collective passion for this project has resulted in a text that is remarkably unified in purpose and voice. Special thanks is due to our Lead Author, Jay Abramson of Arizona State University, who provided the overall vision for the book and oversaw the development of each and every chapter, drawing up the initial blueprint, reading numerous drafts, and assimilating field reviews into actionable revision plans for our authors and editors.

The collective experience of our author team allowed us to pinpoint the subtopics, exceptions, and individual connections that give students the most trouble. The textbook is therefore replete with well-designed features and highlights which help students overcome these barriers. As the students read and practice, they are coached in methods of thinking through problems and internalizing mathematical processes.

Accuracy of the Content

We understand that precision and accuracy are imperatives in mathematics, and undertook a dedicated accuracy program led by experienced faculty.

  1. Each chapter’s manuscript underwent rounds of review and revision by a panel of active instructors.
  2. Then, prior to publication, a separate team of experts checked all text, examples, and graphics for mathematical accuracy; multiple reviewers were assigned to each chapter to minimize the chances of any error escaping notice.
  3. A third team of experts was responsible for the accuracy of the Answer Key, dutifully re-working every solution to eradicate any lingering errors. Finally, the editorial team conducted a multi-round post-production review to ensure the integrity of the content in its final form.

Pedagogical Foundations and Features

Learning Objectives

Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning objectives. The learning objectives are listed explicitly at the beginning of each section and are the focal point of every instructional element

Narrative text

Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the most important ideas:

  • Key terms are boldfaced, typically when first introduced and/or when formally defined.
  • Key concepts and definitions are called out in a blue box for easy reference.

Each learning objective is supported by one or more worked examples, that demonstrate the problem-solving approaches that students must master. The multiple Examples model different approaches to the same type of problem, or introduce similar problems of increasing complexity.

All Examples follow a simple two- or three-part format. The question clearly lays out a mathematical problem to solve. The Solution walks through the steps, usually providing context for the approach—in other words, why the instructor is solving the problem in a specific manner. Finally, the Analysis (for select Examples) reflects on the broader implications of the Solution just shown. Examples are followed by a Try It question, as explained below.


Algebra and Trigonometry contains figures and illustrations, the vast majority of which are graphs and diagrams. Art throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each figure while minimizing visual distractions. Color contrast is employed with discretion to distinguish between the different functions or features of a graph.

Example figure
Supporting Features

Four unobtrusive but important features contribute to and check understanding.

  • A “How To” is a list of steps necessary to solve a certain type of problem. A How To typically precedes an Example that proceeds to demonstrate the steps in action.
  • A “Try It” exercise immediately follows an Example or a set of related Examples, providing the student with an immediate opportunity to solve a similar problem. In the PDF and the Web View version of the text, answers to the Try It exercises are located in the Answer Key.
  • A Q&A may appear at any point in the narrative, but most often follows an Example. This feature pre-empts misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.
  • The “Media” icon appears at the conclusion of each section, just prior to the Section Exercises. This icon marks a list of links to online video tutorials that reinforce the concepts and skills introduced in the section.

While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials, nor were they specifically produced or tailored to accompany Algebra and Trigonometry.

Section Exercises

Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used selectively for guided practice. With over 6300 exercises across the 13 chapters, instructors should have plenty from which to choose1.

Section Exercises are organized by question type, and generally appear in the following order:

  • Verbal questions assess conceptual understanding of key terms and concepts.
  • Algebraic problems require students to apply algebraic manipulations demonstrated in the section.
  • Graphical problems assess students’ ability to interpret or produce a graph.
  • Numeric problems require the student to perform calculations or computations.
  • Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic results or to solve problems via an alternative to the methods demonstrated in the section.
  • Extensions pose problems more challenging than the Examples demonstrated in the section. They require students to synthesize multiple learning objectives or apply critical thinking to solve complex problems.
  • Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology, finance, and the social sciences.
Chapter Review Features

Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students can use to prepare for exams.

  • Key Terms provides a formal definition for each bold-faced term in the chapter.
  • Key Equations presents a compilation of formulas, theorems, and standard-form equations.
  • Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant Example(s) in case students need to review.
  • Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each section.
  • Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note that the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives as opposed to the foundational objectives covered in the opening sections.

Additional Resources

Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, instructor solution manual, and PowerPoint slides. Instructor resources require a verified instructor account, which can be requested on your log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on

About the Authors

Senior Contributing Authors

Jay Abramson, Arizona State University
Jay Abramson has been teaching Precalculus for 33 years, the last 14 at Arizona State University, where he is a principal lecturer in the School of Mathematics and Statistics. His accomplishments at ASU include co-developing the university’s first hybrid and online math courses as well as an extensive library of video lectures and tutorials. In addition, he has served as a contributing author for two of Pearson Education’s math programs, NovaNet Precalculus and Trigonometry. Prior to coming to ASU, Jay taught at Texas State Technical College and Amarillo College. He received Teacher of the Year awards at both institutions.

Contributing Authors

Valeree Falduto, Palm Beach State College
Rachael Gross, Towson University
David Lippman, Pierce College
Melonie Rasmussen, Pierce College
Rick Norwood, East Tennessee State University
Nicholas Belloit, Florida State College Jacksonville
Jean-Marie Magnier, Springfield Technical Community College
Harold Whipple
Christina Fernandez


Phil Clark, Scottsdale Community College
Michael Cohen, Hofstra University
Charles Conrad, Volunteer State Community College
David French, Tidewater Community College
Matthew Goodell, SUNY Ulster
Lance Hemlow, Raritan Valley Community College
Dongrin Kim, Arizona State University
Cynthia Landrigan, Eerie Community College
Wendy Lightheart, Lane Community College
Chinenye Ofodile, Albany State University
Carl Penziul, Tompkins-Cortland Community College
Sandra Nite, Texas A&M University
Eugenia Peterson, Richard J. Daley College
Rhonda Porter, Albany State University
Michael Price, University of Oregon
Steven Purtee, Valencia College
William Radulovich, Florida State College Jacksonville
Camelia Salajean, City Colleges of Chicago
Katy Shields, Oakland Community College
Nathan Schrenk, ECPI University
Pablo Suarez, Delaware State University
Allen Wolmer, Atlanta Jewish Academy

The following faculty contributed to the development of OpenStax Precalculus, the text from which this product was updated and derived.
Precalculus Reviewers
Nina Alketa, Cecil College
Kiran Bhutani, Catholic University of America
Brandie Biddy, Cecil College
Lisa Blank, Lyme Central School
Bryan Blount, Kentucky Wesleyan College
Jessica Bolz, The Bryn Mawr School
Sheri Boyd, Rollins College
Sarah Brewer, Alabama School of Math and Science
Charles Buckley, St. Gregory's University
Michael Cohen, Hofstra University
Kenneth Crane, Texarkana College
Rachel Cywinski, Alamo Colleges
Nathan Czuba
Srabasti Dutta, Ashford University
Kristy Erickson, Cecil College
Nicole Fernandez, Georgetown University / Kent State University
David French, Tidewater Community College
Douglas Furman, SUNY Ulster
Lance Hemlow, Raritan Valley Community College
Erinn Izzo, Nicaragua Christian Academy
John Jaffe
Jerry Jared, Blue Ridge School
Stan Kopec, Mount Wachusett Community College
Kathy Kovacs
Cynthia Landrigan, Erie Community College
Sara Lenhart, Christopher Newport University
Wendy Lightheart, Lane Community College
Joanne Manville, Bunker Hill Community College
Karla McCavit, Albion College
Cynthia McGinnis, Northwest Florida State College
Lana Neal, University of Texas at Austin
Rhonda Porter, Albany State University
Steven Purtee, Valencia College
William Radulovich, Florida State College Jacksonville
Alice Ramos, Bethel College
Nick Reynolds, Montgomery Community College
Amanda Ross, A. A. Ross Consulting and Research, LLC
Erica Rutter, Arizona State University
Sutandra Sarkar, Georgia State University
Willy Schild, Wentworth Institute of Technology
Todd Stephen, Cleveland State University
Scott Sykes, University of West Georgia
Linda Tansil, Southeast Missouri State University
John Thomas, College of Lake County
Diane Valade, Piedmont Virginia Community College
Allen Wolmer, Atlanta Jewish Academy


  • 16,367 total exercises. Includes Chapter Reviews and Practice Tests.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.


Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.