Convert$\text{\hspace{0.17em}}\mathrm{-620\xb0}\text{\hspace{0.17em}}$to radians.

Find the length of a circular arc with a radius 12 centimeters subtended by the central angle of$\text{\hspace{0.17em}}\mathrm{30\xb0}.$

Find the area of the sector with radius of 8 feet and an angle of$\text{\hspace{0.17em}}\frac{5\pi}{4}\text{\hspace{0.17em}}$ radians.

Find the angle between$\text{\hspace{0.17em}}\mathrm{0\xb0}\text{\hspace{0.17em}}$and$\text{\hspace{0.17em}}\text{360\xb0}\text{\hspace{0.17em}}$ that is coterminal with$\text{\hspace{0.17em}}\mathrm{375\xb0}.$

Find the angle between 0 and$\text{\hspace{0.17em}}2\pi \text{\hspace{0.17em}}$in radians that is coterminal with$\text{\hspace{0.17em}}-\frac{4\pi}{7}.$

Draw the angle$\text{\hspace{0.17em}}\mathrm{315\xb0}\text{\hspace{0.17em}}$in standard position on the Cartesian plane.

Draw the angle$\text{\hspace{0.17em}}-\frac{\pi}{6}\text{\hspace{0.17em}}$in standard position on the Cartesian plane.

A carnival has a Ferris wheel with a diameter of 80 feet. The time for the Ferris wheel to make one revolution is 75 seconds. What is the linear speed in feet per second of a point on the Ferris wheel? What is the angular speed in radians per second?

Find the missing sides of the triangle$\text{\hspace{0.17em}}ABC:\mathrm{sin}\text{\hspace{0.17em}}B=\frac{3}{4},c=12.$

The angle of elevation to the top of a building in Chicago is found to be 9 degrees from the ground at a distance of 2000 feet from the base of the building. Using this information, find the height of the building.

Compute sine of$\text{\hspace{0.17em}}\mathrm{240\xb0}.$

State the range of the sine and cosine functions.

Find the exact value of$\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\frac{\pi}{3}.$

Use reference angles to evaluate$\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}\frac{7\pi}{4}.$

Use reference angles to evaluate$\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\mathrm{210\xb0}.$

If$\text{\hspace{0.17em}}\text{csc}\text{\hspace{0.17em}}t=0.68,$what is the$\text{\hspace{0.17em}}\text{csc}(-t)?$

If$\text{\hspace{0.17em}}\text{cos}\text{\hspace{0.17em}}t=\frac{\sqrt{3}}{2},$find$\text{\hspace{0.17em}}\text{cos}(t-2\pi ).$

Find the missing angle:$\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{\pi}{6}\right)=\mathrm{sin}\left(\_\_\_\right)$