Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Prerequisites
    1. Introduction to Prerequisites
    2. 1.1 Real Numbers: Algebra Essentials
    3. 1.2 Exponents and Scientific Notation
    4. 1.3 Radicals and Rational Exponents
    5. 1.4 Polynomials
    6. 1.5 Factoring Polynomials
    7. 1.6 Rational Expressions
    8. Key Terms
    9. Key Equations
    10. Key Concepts
    11. Review Exercises
    12. Practice Test
  3. 2 Equations and Inequalities
    1. Introduction to Equations and Inequalities
    2. 2.1 The Rectangular Coordinate Systems and Graphs
    3. 2.2 Linear Equations in One Variable
    4. 2.3 Models and Applications
    5. 2.4 Complex Numbers
    6. 2.5 Quadratic Equations
    7. 2.6 Other Types of Equations
    8. 2.7 Linear Inequalities and Absolute Value Inequalities
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Review Exercises
    13. Practice Test
  4. 3 Functions
    1. Introduction to Functions
    2. 3.1 Functions and Function Notation
    3. 3.2 Domain and Range
    4. 3.3 Rates of Change and Behavior of Graphs
    5. 3.4 Composition of Functions
    6. 3.5 Transformation of Functions
    7. 3.6 Absolute Value Functions
    8. 3.7 Inverse Functions
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Review Exercises
    13. Practice Test
  5. 4 Linear Functions
    1. Introduction to Linear Functions
    2. 4.1 Linear Functions
    3. 4.2 Modeling with Linear Functions
    4. 4.3 Fitting Linear Models to Data
    5. Key Terms
    6. Key Concepts
    7. Review Exercises
    8. Practice Test
  6. 5 Polynomial and Rational Functions
    1. Introduction to Polynomial and Rational Functions
    2. 5.1 Quadratic Functions
    3. 5.2 Power Functions and Polynomial Functions
    4. 5.3 Graphs of Polynomial Functions
    5. 5.4 Dividing Polynomials
    6. 5.5 Zeros of Polynomial Functions
    7. 5.6 Rational Functions
    8. 5.7 Inverses and Radical Functions
    9. 5.8 Modeling Using Variation
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Review Exercises
    14. Practice Test
  7. 6 Exponential and Logarithmic Functions
    1. Introduction to Exponential and Logarithmic Functions
    2. 6.1 Exponential Functions
    3. 6.2 Graphs of Exponential Functions
    4. 6.3 Logarithmic Functions
    5. 6.4 Graphs of Logarithmic Functions
    6. 6.5 Logarithmic Properties
    7. 6.6 Exponential and Logarithmic Equations
    8. 6.7 Exponential and Logarithmic Models
    9. 6.8 Fitting Exponential Models to Data
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Review Exercises
    14. Practice Test
  8. 7 The Unit Circle: Sine and Cosine Functions
    1. Introduction to The Unit Circle: Sine and Cosine Functions
    2. 7.1 Angles
    3. 7.2 Right Triangle Trigonometry
    4. 7.3 Unit Circle
    5. 7.4 The Other Trigonometric Functions
    6. Key Terms
    7. Key Equations
    8. Key Concepts
    9. Review Exercises
    10. Practice Test
  9. 8 Periodic Functions
    1. Introduction to Periodic Functions
    2. 8.1 Graphs of the Sine and Cosine Functions
    3. 8.2 Graphs of the Other Trigonometric Functions
    4. 8.3 Inverse Trigonometric Functions
    5. Key Terms
    6. Key Equations
    7. Key Concepts
    8. Review Exercises
    9. Practice Test
  10. 9 Trigonometric Identities and Equations
    1. Introduction to Trigonometric Identities and Equations
    2. 9.1 Solving Trigonometric Equations with Identities
    3. 9.2 Sum and Difference Identities
    4. 9.3 Double-Angle, Half-Angle, and Reduction Formulas
    5. 9.4 Sum-to-Product and Product-to-Sum Formulas
    6. 9.5 Solving Trigonometric Equations
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Review Exercises
    11. Practice Test
  11. 10 Further Applications of Trigonometry
    1. Introduction to Further Applications of Trigonometry
    2. 10.1 Non-right Triangles: Law of Sines
    3. 10.2 Non-right Triangles: Law of Cosines
    4. 10.3 Polar Coordinates
    5. 10.4 Polar Coordinates: Graphs
    6. 10.5 Polar Form of Complex Numbers
    7. 10.6 Parametric Equations
    8. 10.7 Parametric Equations: Graphs
    9. 10.8 Vectors
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Review Exercises
    14. Practice Test
  12. 11 Systems of Equations and Inequalities
    1. Introduction to Systems of Equations and Inequalities
    2. 11.1 Systems of Linear Equations: Two Variables
    3. 11.2 Systems of Linear Equations: Three Variables
    4. 11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
    5. 11.4 Partial Fractions
    6. 11.5 Matrices and Matrix Operations
    7. 11.6 Solving Systems with Gaussian Elimination
    8. 11.7 Solving Systems with Inverses
    9. 11.8 Solving Systems with Cramer's Rule
    10. Key Terms
    11. Key Equations
    12. Key Concepts
    13. Review Exercises
    14. Practice Test
  13. 12 Analytic Geometry
    1. Introduction to Analytic Geometry
    2. 12.1 The Ellipse
    3. 12.2 The Hyperbola
    4. 12.3 The Parabola
    5. 12.4 Rotation of Axes
    6. 12.5 Conic Sections in Polar Coordinates
    7. Key Terms
    8. Key Equations
    9. Key Concepts
    10. Review Exercises
    11. Practice Test
  14. 13 Sequences, Probability, and Counting Theory
    1. Introduction to Sequences, Probability and Counting Theory
    2. 13.1 Sequences and Their Notations
    3. 13.2 Arithmetic Sequences
    4. 13.3 Geometric Sequences
    5. 13.4 Series and Their Notations
    6. 13.5 Counting Principles
    7. 13.6 Binomial Theorem
    8. 13.7 Probability
    9. Key Terms
    10. Key Equations
    11. Key Concepts
    12. Review Exercises
    13. Practice Test
  15. A | Proofs, Identities, and Toolkit Functions
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index
definition of the exponential function f(x)= b x ,  where  b>0, b1 f(x)= b x ,  where  b>0, b1
definition of exponential growth f(x)=a b x , where a>0, b>0, b1 f(x)=a b x , where a>0, b>0, b1
compound interest formula A(t)=P ( 1+ r n ) nt  , where A(t) is the account value at time t t is the number of years P is the initial investment, often called the principal r is the annual percentage rate (APR), or nominal rate n is the number of compounding periods in one year A(t)=P ( 1+ r n ) nt  , where A(t) is the account value at time t t is the number of years P is the initial investment, often called the principal r is the annual percentage rate (APR), or nominal rate n is the number of compounding periods in one year
continuous growth formula A(t)=a e rt , where A(t)=a e rt , where
t tis the number of unit time periods of growth
a ais the starting amount (in the continuous compounding formula a is replaced with P, the principal)
e eis the mathematical constant,   e2.718282   e2.718282
General Form for the Translation of the Parent Function  f(x)= b x  f(x)= b x f(x)=a b x+c +d f(x)=a b x+c +d
Definition of the logarithmic function For   x>0,b>0,b1,   x>0,b>0,b1,
y= log b ( x )  y= log b ( x )  if and only if   b y =x.   b y =x.
Definition of the common logarithm For  x>0,  x>0, y=log( x )  y=log( x )  if and only if   10 y =x.   10 y =x.
Definition of the natural logarithm For  x>0,  x>0, y=ln( x )  y=ln( x )  if and only if   e y =x.   e y =x.
General Form for the Translation of the Parent Logarithmic Function  f(x)= log b ( x )  f(x)= log b ( x )  f(x)=a log b ( x+c )+d  f(x)=a log b ( x+c )+d
The Product Rule for Logarithms log b (MN)= log b ( M )+ log b ( N ) log b (MN)= log b ( M )+ log b ( N )
The Quotient Rule for Logarithms log b ( M N )= log b M log b N log b ( M N )= log b M log b N
The Power Rule for Logarithms log b ( M n )=n log b M log b ( M n )=n log b M
The Change-of-Base Formula log b M= log n M log n b          n>0,n1,b1 log b M= log n M log n b          n>0,n1,b1
One-to-one property for exponential functions For any algebraic expressions  S   S  and  T   T  and any positive real number  b,   b,  where
b S = b T   b S = b T   if and only if  S=T.  S=T.
Definition of a logarithm For any algebraic expression S and positive real numbers  b    b   and  c,   c,  where  b1,  b1,
log b (S)=c  log b (S)=c  if and only if   b c =S.   b c =S.
One-to-one property for logarithmic functions For any algebraic expressions S and T and any positive real number  b,   b,  where  b1,  b1,
log b S= log b T  log b S= log b T  if and only if  S=T.  S=T.
Half-life formula If  A= A 0 e kt ,  A= A 0 e kt , k<0, k<0, the half-life is  t= ln(2) k .  t= ln(2) k .
Carbon-14 dating t= ln( A A 0 ) 0.000121 . t= ln( A A 0 ) 0.000121 .
A 0   A 0   is the amount of carbon-14 when the plant or animal died
A  A  is the amount of carbon-14 remaining today
t t is the age of the fossil in years
Doubling time formula If  A= A 0 e kt ,  A= A 0 e kt , k>0, k>0, the doubling time is  t= ln2 k  t= ln2 k
Newton’s Law of Cooling T(t)=A e kt + T s , T(t)=A e kt + T s , where   T s     T s   is the ambient temperature,  A=T(0) T s ,  A=T(0) T s , and  k   k  is the continuous rate of cooling.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Feb 7, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.