Learning Objectives
In this section, you will:
- Find the sum and difference of two matrices.
- Find scalar multiples of a matrix.
- Find the product of two matrices.
Two club soccer teams, the Wildcats and the Mud Cats, are hoping to obtain new equipment for an upcoming season. Table 1 shows the needs of both teams.
Wildcats | Mud Cats | |
---|---|---|
Goals | 6 | 10 |
Balls | 30 | 24 |
Jerseys | 14 | 20 |
A goal costs $300; a ball costs $10; and a jersey costs $30. How can we find the total cost for the equipment needed for each team? In this section, we discover a method in which the data in the soccer equipment table can be displayed and used for calculating other information. Then, we will be able to calculate the cost of the equipment.
Finding the Sum and Difference of Two Matrices
To solve a problem like the one described for the soccer teams, we can use a matrix, which is a rectangular array of numbers. A row in a matrix is a set of numbers that are aligned horizontally. A column in a matrix is a set of numbers that are aligned vertically. Each number is an entry, sometimes called an element, of the matrix. Matrices (plural) are enclosed in [ ] or ( ), and are usually named with capital letters. For example, three matrices named and are shown below.
Describing Matrices
A matrix is often referred to by its size or dimensions: indicating rows and columns. Matrix entries are defined first by row and then by column. For example, to locate the entry in matrix identified as we look for the entry in row column In matrix shown below, the entry in row 2, column 3 is
A square matrix is a matrix with dimensions meaning that it has the same number of rows as columns. The matrix above is an example of a square matrix.
A row matrix is a matrix consisting of one row with dimensions
A column matrix is a matrix consisting of one column with dimensions
A matrix may be used to represent a system of equations. In these cases, the numbers represent the coefficients of the variables in the system. Matrices often make solving systems of equations easier because they are not encumbered with variables. We will investigate this idea further in the next section, but first we will look at basic matrix operations.
Matrices
A matrix is a rectangular array of numbers that is usually named by a capital letter: and so on. Each entry in a matrix is referred to as such that represents the row and represents the column. Matrices are often referred to by their dimensions: indicating rows and columns.
Example 1
Finding the Dimensions of the Given Matrix and Locating Entries
Given matrix
- ⓐWhat are the dimensions of matrix
- ⓑWhat are the entries at and
Solution
- ⓐThe dimensions are because there are three rows and three columns.
- ⓑEntry is the number at row 3, column 1, which is 3. The entry is the number at row 2, column 2, which is 4. Remember, the row comes first, then the column.
Adding and Subtracting Matrices
We use matrices to list data or to represent systems. Because the entries are numbers, we can perform operations on matrices. We add or subtract matrices by adding or subtracting corresponding entries.
In order to do this, the entries must correspond. Therefore, addition and subtraction of matrices is only possible when the matrices have the same dimensions. We can add or subtract a matrix and another matrix, but we cannot add or subtract a matrix and a matrix because some entries in one matrix will not have a corresponding entry in the other matrix.
Adding and Subtracting Matrices
Given matrices and of like dimensions, addition and subtraction of and will produce matrix or
matrix of the same dimension.
Matrix addition is commutative.
It is also associative.
Example 2
Finding the Sum of Matrices
Find the sum of and given
Solution
Add corresponding entries.
Example 3
Adding Matrix A and Matrix B
Find the sum of and
Solution
Add corresponding entries. Add the entry in row 1, column 1, of matrix to the entry in row 1, column 1, of Continue the pattern until all entries have been added.
Example 4
Finding the Difference of Two Matrices
Find the difference of and
Solution
We subtract the corresponding entries of each matrix.
Example 5
Finding the Sum and Difference of Two 3 x 3 Matrices
Given and
- ⓐFind the sum.
- ⓑFind the difference.
Solution
- ⓐAdd the corresponding entries.
- ⓑSubtract the corresponding entries.
Try It #1
Add matrix and matrix
Finding Scalar Multiples of a Matrix
Besides adding and subtracting whole matrices, there are many situations in which we need to multiply a matrix by a constant called a scalar. Recall that a scalar is a real number quantity that has magnitude, but not direction. For example, time, temperature, and distance are scalar quantities. The process of scalar multiplication involves multiplying each entry in a matrix by a scalar. A scalar multiple is any entry of a matrix that results from scalar multiplication.
Consider a real-world scenario in which a university needs to add to its inventory of computers, computer tables, and chairs in two of the campus labs due to increased enrollment. They estimate that 15% more equipment is needed in both labs. The school’s current inventory is displayed in Table 2.
Lab A | Lab B | |
---|---|---|
Computers | 15 | 27 |
Computer Tables | 16 | 34 |
Chairs | 16 | 34 |
Converting the data to a matrix, we have
To calculate how much computer equipment will be needed, we multiply all entries in matrix by 0.15.
We must round up to the next integer, so the amount of new equipment needed is
Adding the two matrices as shown below, we see the new inventory amounts.
This means
Thus, Lab A will have 18 computers, 19 computer tables, and 19 chairs; Lab B will have 32 computers, 40 computer tables, and 40 chairs.
Scalar Multiplication
Scalar multiplication involves finding the product of a constant by each entry in the matrix. Given
the scalar multiple is
Scalar multiplication is distributive. For the matrices and with scalars and
Example 6
Multiplying the Matrix by a Scalar
Multiply matrix by the scalar 3.
Solution
Multiply each entry in by the scalar 3.
Try It #2
Given matrix find where
Example 7
Finding the Sum of Scalar Multiples
Find the sum
Solution
First, find then
Now, add
Finding the Product of Two Matrices
In addition to multiplying a matrix by a scalar, we can multiply two matrices. Finding the product of two matrices is only possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is equal to the number of rows of the second matrix. If is an matrix and is an matrix, then the product matrix is an matrix. For example, the product is possible because the number of columns in is the same as the number of rows in If the inner dimensions do not match, the product is not defined.
We multiply entries of with entries of according to a specific pattern as outlined below. The process of matrix multiplication becomes clearer when working a problem with real numbers.
To obtain the entries in row of we multiply the entries in row of by column in and add. For example, given matrices and where the dimensions of are and the dimensions of are the product of will be a matrix.
Multiply and add as follows to obtain the first entry of the product matrix
- To obtain the entry in row 1, column 1 of multiply the first row in by the first column in and add.
- To obtain the entry in row 1, column 2 of multiply the first row of by the second column in and add.
- To obtain the entry in row 1, column 3 of multiply the first row of by the third column in and add.
We proceed the same way to obtain the second row of In other words, row 2 of times column 1 of row 2 of times column 2 of row 2 of times column 3 of When complete, the product matrix will be
Properties of Matrix Multiplication
For the matrices and the following properties hold.
- Matrix multiplication is associative:
- Matrix multiplication is distributive:
Note that matrix multiplication is not commutative.
Example 8
Multiplying Two Matrices
Multiply matrix and matrix
Solution
First, we check the dimensions of the matrices. Matrix has dimensions and matrix has dimensions The inner dimensions are the same so we can perform the multiplication. The product will have the dimensions
We perform the operations outlined previously.
Example 9
Multiplying Two Matrices
Given and
- ⓐ Find
- ⓑ Find
Solution
- ⓐAs the dimensions of are and the dimensions of are these matrices can be multiplied together because the number of columns in matches the number of rows in The resulting product will be a matrix, the number of rows in by the number of columns in
- ⓑThe dimensions of are and the dimensions of are The inner dimensions match so the product is defined and will be a matrix.
Analysis
Notice that the products and are not equal.
This illustrates the fact that matrix multiplication is not commutative.
Q&A
Is it possible for AB to be defined but not BA?
Yes, consider a matrix A with dimension and matrix B with dimension For the product AB the inner dimensions are 4 and the product is defined, but for the product BA the inner dimensions are 2 and 3 so the product is undefined.
Example 10
Using Matrices in Real-World Problems
Let’s return to the problem presented at the opening of this section. We have Table 3, representing the equipment needs of two soccer teams.
Wildcats | Mud Cats | |
---|---|---|
Goals | 6 | 10 |
Balls | 30 | 24 |
Jerseys | 14 | 20 |
We are also given the prices of the equipment, as shown in Table 4.
Goal | $300 |
Ball | $10 |
Jersey | $30 |
We will convert the data to matrices. Thus, the equipment need matrix is written as
The cost matrix is written as
We perform matrix multiplication to obtain costs for the equipment.
The total cost for equipment for the Wildcats is $2,520, and the total cost for equipment for the Mud Cats is $3,840.
How To
Given a matrix operation, evaluate using a calculator.
- Save each matrix as a matrix variable
- Enter the operation into the calculator, calling up each matrix variable as needed.
- If the operation is defined, the calculator will present the solution matrix; if the operation is undefined, it will display an error message.
Example 11
Using a Calculator to Perform Matrix Operations
Find given
Solution
On the matrix page of the calculator, we enter matrix above as the matrix variable matrix above as the matrix variable and matrix above as the matrix variable
On the home screen of the calculator, we type in the problem and call up each matrix variable as needed.
The calculator gives us the following matrix.
Media
Access these online resources for additional instruction and practice with matrices and matrix operations.
11.5 Section Exercises
Verbal
Can we add any two matrices together? If so, explain why; if not, explain why not and give an example of two matrices that cannot be added together.
Can we multiply any column matrix by any row matrix? Explain why or why not.
Can any two matrices of the same size be multiplied? If so, explain why, and if not, explain why not and give an example of two matrices of the same size that cannot be multiplied together.
Does matrix multiplication commute? That is, does If so, prove why it does. If not, explain why it does not.
Algebraic
For the following exercises, use the matrices below and perform the matrix addition or subtraction. Indicate if the operation is undefined.
For the following exercises, use the matrices below to perform scalar multiplication.
For the following exercises, use the matrices below to perform matrix multiplication.
For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain why the operation cannot be performed.
For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain why the operation cannot be performed. (Hint: )
For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain why the operation cannot be performed. (Hint: )
Technology
For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain why the operation cannot be performed. Use a calculator to verify your solution.
Extensions
For the following exercises, use the matrix below to perform the indicated operation on the given matrix.