Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry 2e

A | Proofs, Identities, and Toolkit Functions

Algebra and Trigonometry 2eA | Proofs, Identities, and Toolkit Functions
Search for key terms or text.

Important Proofs and Derivations

Product Rule

log a xy= log a x+ log a y log a xy= log a x+ log a y

Proof:

Let m= log a x m= log a x and n= log a y. n= log a y.

Write in exponent form.

x= a m x= a m and y= a n . y= a n .

Multiply.

xy= a m a n = a m+n xy= a m a n = a m+n

a m+n = xy log a (xy) = m+n = log a x+ log b y a m+n = xy log a (xy) = m+n = log a x+ log b y

Change of Base Rule

log a b= log c b log c a log a b= 1 log b a log a b= log c b log c a log a b= 1 log b a

where x x and y y are positive, and a>0,a1. a>0,a1.

Proof:

Let x= log a b. x= log a b.

Write in exponent form.

a x =b a x =b

Take the log c log c of both sides.

log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log c a log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log c a

When c=b, c=b,

log a b= log b b log b a = 1 log b a log a b= log b b log b a = 1 log b a

Heron’s Formula

A= s( sa )( sb )( sc ) A= s( sa )( sb )( sc )

where s= a+b+c 2 s= a+b+c 2

Proof:

Let a, a, b, b, and c c be the sides of a triangle, and h h be the height.

So s= a+b+c 2 s= a+b+c 2 .

We can further name the parts of the base in each triangle established by the height such that p+q=c. p+q=c.

Using the Pythagorean Theorem, h 2 + p 2 = a 2 h 2 + p 2 = a 2 and h 2 + q 2 = b 2 . h 2 + q 2 = b 2 .

Since q=cp, q=cp, then q 2 = ( cp ) 2 . q 2 = ( cp ) 2 . Expanding, we find that q 2 = c 2 2cp+ p 2 . q 2 = c 2 2cp+ p 2 .

We can then add h 2 h 2 to each side of the equation to get h 2 + q 2 = h 2 + c 2 2cp+ p 2 . h 2 + q 2 = h 2 + c 2 2cp+ p 2 .

Substitute this result into the equation h 2 + q 2 = b 2 h 2 + q 2 = b 2 yields b 2 = h 2 + c 2 2cp+ p 2 . b 2 = h 2 + c 2 2cp+ p 2 .

Then replacing h 2 + p 2 h 2 + p 2 with a 2 a 2 gives b 2 = a 2 2cp+ c 2 . b 2 = a 2 2cp+ c 2 .

Solve for p p to get

p= a 2 + b 2 c 2 2c p= a 2 + b 2 c 2 2c

Since h 2 = a 2 p 2 , h 2 = a 2 p 2 , we get an expression in terms of a, a, b, b, and c. c.

h 2 = a 2 p 2 = (a+p)(ap) = [ a+ ( a 2 + c 2 b 2 ) 2c ][ a ( a 2 + c 2 b 2 ) 2c ] = ( 2ac+ a 2 + c 2 b 2 )( 2ac a 2 c 2 + b 2 ) 4 c 2 = ( (a+c) 2 b 2 )( b 2 (ac) 2 ) 4 c 2 = (a+b+c)(a+cb)(b+ac)(ba+c) 4 c 2 = (a+b+c)(a+b+c)(ab+c)(a+bc) 4 c 2 = 2s(2sa)(2sb)(2sc) 4 c 2 h 2 = a 2 p 2 = (a+p)(ap) = [ a+ ( a 2 + c 2 b 2 ) 2c ][ a ( a 2 + c 2 b 2 ) 2c ] = ( 2ac+ a 2 + c 2 b 2 )( 2ac a 2 c 2 + b 2 ) 4 c 2 = ( (a+c) 2 b 2 )( b 2 (ac) 2 ) 4 c 2 = (a+b+c)(a+cb)(b+ac)(ba+c) 4 c 2 = (a+b+c)(a+b+c)(ab+c)(a+bc) 4 c 2 = 2s(2sa)(2sb)(2sc) 4 c 2

Therefore,

h 2 = 4s(sa)(sb)(sc) c 2 h = 2 s(sa)(sb)(sc) c h 2 = 4s(sa)(sb)(sc) c 2 h = 2 s(sa)(sb)(sc) c

And since A= 1 2 ch, A= 1 2 ch, then

A = 1 2 c 2 s(sa)(sb)(sc) c = s(sa)(sb)(sc) A = 1 2 c 2 s(sa)(sb)(sc) c = s(sa)(sb)(sc)

Properties of the Dot Product

u·v=v·u u·v=v·u

Proof:

u·v = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n = u 1 v 1 + u 2 v 2 +...+ u n v n = v 1 u 1 + v 2 u 2 +...+ v n v n = v 1 , v 2 ,... v n · u 1 , u 2 ,... u n =v·u u·v = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n = u 1 v 1 + u 2 v 2 +...+ u n v n = v 1 u 1 + v 2 u 2 +...+ v n v n = v 1 , v 2 ,... v n · u 1 , u 2 ,... u n =v·u

u·( v+w )=u·v+u·w u·( v+w )=u·v+u·w

Proof:

u·(v+w) = u 1 , u 2 ,... u n ·( v 1 , v 2 ,... v n + w 1 , w 2 ,... w n ) = u 1 , u 2 ,... u n · v 1 + w 1 , v 2 + w 2 ,... v n + w n = u 1 ( v 1 + w 1 ), u 2 ( v 2 + w 2 ),... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 ,... u n v n + u n w n = u 1 v 1 , u 2 v 2 ,..., u n v n + u 1 w 1 , u 2 w 2 ,..., u n w n = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n + u 1 , u 2 ,... u n · w 1 , w 2 ,... w n =u·v+u·w u·(v+w) = u 1 , u 2 ,... u n ·( v 1 , v 2 ,... v n + w 1 , w 2 ,... w n ) = u 1 , u 2 ,... u n · v 1 + w 1 , v 2 + w 2 ,... v n + w n = u 1 ( v 1 + w 1 ), u 2 ( v 2 + w 2 ),... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 ,... u n v n + u n w n = u 1 v 1 , u 2 v 2 ,..., u n v n + u 1 w 1 , u 2 w 2 ,..., u n w n = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n + u 1 , u 2 ,... u n · w 1 , w 2 ,... w n =u·v+u·w

u·u= | u | 2 u·u= | u | 2

Proof:

u·u = u 1 , u 2 ,... u n · u 1 , u 2 ,... u n = u 1 u 1 + u 2 u 2 +...+ u n u n = u 1 2 + u 2 2 +...+ u n 2 =| u 1 , u 2 ,... u n | 2 =u·u u·u = u 1 , u 2 ,... u n · u 1 , u 2 ,... u n = u 1 u 1 + u 2 u 2 +...+ u n u n = u 1 2 + u 2 2 +...+ u n 2 =| u 1 , u 2 ,... u n | 2 =u·u

Standard Form of the Ellipse centered at the Origin

1= x 2 a 2 + y 2 b 2 1= x 2 a 2 + y 2 b 2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =constant ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =constant

Consider a vertex.

Then, ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =2a ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =2a

Consider a covertex.

Then b 2 + c 2 = a 2 . b 2 + c 2 = a 2 .

(x(c)) 2 + (y0) 2 + (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 = 2a (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a (xc) 2 + y 2 ) 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 1 4a ( 4cx4 a 2 ) = (xc) 2 + y 2 a c a x = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = x 2 2xc+ c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 )+ y 2 (x(c)) 2 + (y0) 2 + (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 = 2a (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a (xc) 2 + y 2 ) 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 1 4a ( 4cx4 a 2 ) = (xc) 2 + y 2 a c a x = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = x 2 2xc+ c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 )+ y 2

Let 1= a 2 a 2 . 1= a 2 a 2 .

a 2 c 2 = x 2 ( a 2 c 2 a 2 )+ y 2 1 = x 2 a 2 + y 2 a 2 c 2 a 2 c 2 = x 2 ( a 2 c 2 a 2 )+ y 2 1 = x 2 a 2 + y 2 a 2 c 2

Because b 2 + c 2 = a 2 , b 2 + c 2 = a 2 , then b 2 = a 2 c 2 . b 2 = a 2 c 2 .

1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2 1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2

Standard Form of the Hyperbola

1= x 2 a 2 y 2 b 2 1= x 2 a 2 y 2 b 2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Diagram 1: The difference of the distances from Point P to the foci is constant:

(x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 =constant (x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 =constant

Diagram 2: When the point is a vertex, the difference is 2a. 2a.

( x( c ) ) 2 + ( y0 ) 2 ( xc ) 2 + ( y0 ) 2 =2a ( x( c ) ) 2 + ( y0 ) 2 ( xc ) 2 + ( y0 ) 2 =2a

(x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 (xc) 2 + y 2 = 2a (x+c) 2 + y 2 = 2a+ (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a+ (xc) 2 + y 2 ) x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 +4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 cx a 2 = a (xc) 2 + y 2 ( cx a 2 ) 2 = a 2 ( (xc) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2 (x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 (xc) 2 + y 2 = 2a (x+c) 2 + y 2 = 2a+ (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a+ (xc) 2 + y 2 ) x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 +4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 cx a 2 = a (xc) 2 + y 2 ( cx a 2 ) 2 = a 2 ( (xc) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2

Define b b as a positive number such that b 2 = c 2 a 2 . b 2 = c 2 a 2 .

a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2 a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2

Trigonometric Identities

Pythagorean Identities cos 2 θ+ sin 2 θ=1 1+ tan 2 θ= sec 2 θ 1+ cot 2 θ= csc 2 θ cos 2 θ+ sin 2 θ=1 1+ tan 2 θ= sec 2 θ 1+ cot 2 θ= csc 2 θ
Even-Odd Identities cos(−θ)=cosθ sec(−θ)=secθ sin(−θ)=sinθ tan(−θ)=tanθ csc(−θ)=cscθ cot(−θ)=cotθ cos(−θ)=cosθ sec(−θ)=secθ sin(−θ)=sinθ tan(−θ)=tanθ csc(−θ)=cscθ cot(−θ)=cotθ
Cofunction Identities cosθ=sin( π 2 θ ) sinθ=cos( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ ) cosθ=sin( π 2 θ ) sinθ=cos( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ )
Fundamental Identities tanθ= sinθ cosθ secθ= 1 cosθ cscθ= 1 sinθ cotθ= 1 tanθ = cosθ sinθ tanθ= sinθ cosθ secθ= 1 cosθ cscθ= 1 sinθ cotθ= 1 tanθ = cosθ sinθ
Sum and Difference Identities cos(α+β)=cosαcosβsinαsinβ cos(αβ)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(αβ)=sinαcosβcosαsinβ tan(α+β)= tanα+tanβ 1tanαtanβ tan(αβ)= tanαtanβ 1+tanαtanβ cos(α+β)=cosαcosβsinαsinβ cos(αβ)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(αβ)=sinαcosβcosαsinβ tan(α+β)= tanα+tanβ 1tanαtanβ tan(αβ)= tanαtanβ 1+tanαtanβ
Double-Angle Formulas sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ cos(2θ)=12 sin 2 θ cos(2θ)=2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ cos(2θ)=12 sin 2 θ cos(2θ)=2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ
Half-Angle Formulas sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα tan α 2 = sinα 1+cosα tan α 2 = 1cosα sinα sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα tan α 2 = sinα 1+cosα tan α 2 = 1cosα sinα
Reduction Formulas sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ ) sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ )
Product-to-Sum Formulas cosαcosβ= 1 2 [ cos(αβ)+cos(α+β) ] sinαcosβ= 1 2 [ sin(α+β)+sin(αβ) ] sinαsinβ= 1 2 [ cos(αβ)cos(α+β) ] cosαsinβ= 1 2 [ sin(α+β)sin(αβ) ] cosαcosβ= 1 2 [ cos(αβ)+cos(α+β) ] sinαcosβ= 1 2 [ sin(α+β)+sin(αβ) ] sinαsinβ= 1 2 [ cos(αβ)cos(α+β) ] cosαsinβ= 1 2 [ sin(α+β)sin(αβ) ]
Sum-to-Product Formulas sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 ) sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 )
Law of Sines sinα a = sinβ b = sinγ c a sinα = b sinβ = c sinγ sinα a = sinβ b = sinγ c a sinα = b sinβ = c sinγ
Law of Cosines a 2 = b 2 + c 2 2bccosα b 2 = a 2 + c 2 2accosβ c 2 = a 2 + b 2 2abcosγ a 2 = b 2 + c 2 2bccosα b 2 = a 2 + c 2 2accosβ c 2 = a 2 + b 2 2abcosγ
Table A1

ToolKit Functions

Figure A1
Figure A2
Figure A3

Trigonometric Functions

Unit Circle

Figure A4
Angle 0 0 π 6 ,or 30° π 6 ,or 30° π 4 ,or 45° π 4 ,or 45° π 3 ,or 60° π 3 ,or 60° π 2 ,or 90° π 2 ,or 90°
Cosine 1 3 2 3 2 2 2 2 2 1 2 1 2 0
Sine 0 1 2 1 2 2 2 2 2 3 2 3 2 1
Tangent 0 3 3 3 3 1 3 3 Undefined
Secant 1 2 3 3 2 3 3 2 2 2 Undefined
Cosecant Undefined 2 2 2 2 3 3 2 3 3 1
Cotangent Undefined 3 3 1 3 3 3 3 0
Table A2
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/algebra-and-trigonometry-2e/pages/1-introduction-to-prerequisites

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/algebra-and-trigonometry-2e/pages/1-introduction-to-prerequisites

Citation information

© Jun 16, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.