Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra 1

Simplify Expressions Using Properties of Exponents: Mini-Lesson Review

Algebra 1Simplify Expressions Using Properties of Exponents: Mini-Lesson Review

Search for key terms or text.

Mini Lesson Question

Question #1: Simplify Expressions Using Properties of Exponents

Which expression is correct?
  1. x 8 x 4 = x 2
  2. y 6 y 2 = y 3
  3. x 2 x 3 = x 6
  4. y y 3 = y 4

Simplify Expressions Using Properties of Exponents

In this unit, remember to double click on mathematical expressions/equations to enlarge, if needed.

In the expression y 4 · y 2 y 4 · y 2 :

y 4 = y · y · y · y y 4 = y · y · y · y

The exponent 4 means there are 4 factors of y y .

y 2 = y · y y 2 = y · y

The exponent 2 means there are 2 factors of y y .

y 4 · y 2 = y · y · y · y · y · y y 4 · y 2 = y · y · y · y · y · y

There are 6 factors of y y , which can be written as y 6 y 6 .

y 4 · y 2 = y 6 y 4 · y 2 = y 6

Notice the exponent is the sum of the exponents of the factors.

When you multiply exponential expressions with the same base, you keep the base and add the exponents.

Product Property for Exponents

If a a is a real number and m m and n n are integers, then

a m · a n = a m + n a m · a n = a m + n

To multiply with like bases, add the exponents.

In the expression y 5 y 3 y 5 y 3 :

y 5 = y · y · y · y · y y 5 = y · y · y · y · y

The exponent 5 means there are 5 factors of y y .

y 3 = y · y · y y 3 = y · y · y

The exponent 3 means there are 3 factors of y y .

y 5 y 3 = y · y · y · y · y y · y · y = y · y y 5 y 3 = y · y · y · y · y y · y · y =y·y

There are 2 factors of y y , which can be written as y 2 y 2 .

y 5 y 3 = y 2 y 5 y 3 = y 2

Notice the exponent is the difference of the exponents of the factors.

When you divide exponential expressions with the same base, you keep the base and subtract the exponents.

Quotient Property for Exponents

If a a is a real number, a 0 a 0 , and m m and n n are integers, then

a m a n = a m n a m a n = a m n , m > n m > n and a m a n = 1 a n m a m a n = 1 a n m , n > m n > m

Here’s how to simplify expressions using properties of exponents.

1. x 2 · x 3 x 2 · x 3

The bases are the same. To multiply, use the Product Property for Exponents.

x 2 · x 3 = x 2 + 3 = x 5 x 2 · x 3 = x 2 + 3 = x 5 . To multiply with like bases, add the exponents.

2. y · y 4 y · y 4

The bases are the same. To multiply, use the Product Property for Exponents.

Remember: A variable with no exponent shown has an exponent of 1 1 , y = y 1 y = y 1 .

y · y 4 = y 1 · y 4 = y 1 + 4 = y 5 y · y 4 = y 1 · y 4 = y 1 + 4 = y 5 . To multiply with like bases, add the exponents.

3. x 5 x 2 x 5 x 2

The bases are the same. To divide, use the Quotient Property of Exponents.

x 5 x 2 = x 5 2 = x 3 x 5 x 2 = x 5 2 = x 3 . To divide with like bases, subtract the exponents.

4. x 4 y z x 2 y 2 z x 4 y z x 2 y 2 z

The expression contains like bases. Use the Quotient Property of Exponents.

x 4 y z x 2 y 2 z = x 4 y 1 z 1 x 2 y 2 z 1 = x 4 2 z 1 1 y 2 1 = x 2 z 0 y 1 = x 2 y x 4 y z x 2 y 2 z = x 4 y 1 z 1 x 2 y 2 z 1 = x 4 2 z 1 1 y 2 1 = x 2 z 0 y 1 = x 2 y . To divide with like bases, subtract the exponents.

Remember: Any nonzero number to the zero power is 1.

Try it

Try It: Simplify Expressions Using Properties of Exponents

Simplify the expressions.

1. x 3 · x 4 x 3 · x 4

2. x 9 x 3 x 9 x 3

3. x 4 y 2 z 5 x 6 y z 3 x 4 y 2 z 5 x 6 y z 3

Check Your Understanding

Which expression is equivalent to y 6 y 6 ?

Multiple Choice:

  1. y 2 · y 3 y 2 · y 3

  2. y · y 6 y · y 6

  3. y 12 y 2 y 12 y 2

  4. y 12 y 6 y 12 y 6

Videos: Simplifying Expressions with Exponents

Khan Academy: Exponent properties involving products

Watch this video to see how to multiply expressions with exponents.

Khan Academy: Exponents properties with quotients

Watch this video to see how to divide expressions with exponents.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/algebra-1/pages/about-this-course

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/algebra-1/pages/about-this-course

Citation information

© May 21, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.