Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra 1

4.8.6 Practice

Algebra 14.8.6 Practice

Search for key terms or text.

Complete the following questions to practice the skills you have learned in this lesson.

Use the following information to answer questions 1 - 5.

The temperature was recorded at several times during the day. Function T gives the temperature in degrees Fahrenheit, n hours since midnight. A graph for this function is provided.

  1. For the interval from n = 1 to n = 5 , determine if the average rate of change of the temperature is positive, negative, or zero.
  1. zero
  2. negative
  3. positive
  1. For the interval from n = 5 to n = 7 , determine if the average rate of change of the temperature is positive, negative, or zero.
  1. zero
  2. negative
  3. positive
  1. For the interval from n = 10 to n = 20 , determine if the average rate of change of the temperature is positive, negative, or zero.
  1. zero
  2. negative
  3. positive
  1. For the interval from n = 15 to n = 18 , determine if the average rate of change of the temperature is positive, negative, or zero.
  1. zero
  2. negative
  3. positive
  1. For the interval from n = 20 to n = 24 , determine if the average rate of change of the temperature is positive, negative, or zero.
  1. zero
  2. negative
  3. positive

The graph below shows the total distance, in feet, walked by a person as a function of time, in seconds. Use this information to answer questions 6 - 7.

Distance Graph


  1. Given the graph of total distance walked as a function of time, was the person walking faster between 20 and 40 seconds or between 80 and 100 seconds?
  1. Between 80 and 100 seconds
  2. Between 20 and 40 seconds
  3. Between 0 and 40 seconds
  1. Was the person walking faster between 0 and 40 seconds or between 40 and 100 seconds, based on the given graph?
  1. Between 40 and 100 seconds
  2. Between 40 and 80 seconds
  3. Between 0 and 40 seconds

For questions 8 - 11, use the following scenario.

The height, in feet, of a squirrel running up and down a tree is a function of time, in seconds.

Match each description with a statement about the average rate of change of the function for that interval.

  1. The squirrel runs up the tree very fast. The average rate of change is -
  1. Large and positive
  2. Small and positive
  3. Zero
  4. Negative
  1. The squirrel starts and ends at the same height. The average rate of change is -
  1. Large and positive
  2. Small and positive
  3. Zero
  4. Negative
  1. The squirrel runs down the tree. The average rate of change is _____.
  1. Large and positive
  2. Small and positive
  3. Zero
  4. Negative
  1. The squirrel runs up the tree slowly. The average rate of change is _____.
  1. Large and positive
  2. Small and positive
  3. Zero
  4. Negative
  1. The percentage of voters ages 18 to 29 who participated in each United States presidential election between the years 1988 and 2016 is shown in the table.
Year 1988 1992 1996 2000 2004 2008 2012 2016
Percentage of voters ages 18–29 35.7 42.7 33.1 34.5 45.0 48.4 40.9 43.4
Table 4.8.0

The function P gives the percent of voters ages 18 to 29 years old who participated in the election in year t .

Determine the average rate of change for P between 1992 and 2000.

  1. -2.4 percent per year
  2. 0.35 percent per year
  3. -1.025 percent per year
  4. 1.025 percent per year
  1. Some points from a linear function, f ( x ) , are listed in the table below. What is the rate of change of this linear function?
x 0 5 10 15
f ( x ) 4 6 8 10
Table 4.8.1
  1. 6
  2. 2 5
  3. 2 5
  4. 2
  1. Find the rate of change of the function, g ( x ) , graphed below.

GRAPH OF A LINE THAT PASSES THROUGH THE POINTS (0, 2) AND (1, −1).

  1. What is the rate of change of the function h ( x ) = 4 x 7 ?
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/algebra-1/pages/about-this-course

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/algebra-1/pages/about-this-course

Citation information

© May 21, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.