Skip to Content
OpenStax Logo
Principles of Macroeconomics

7.2 Labor Productivity and Economic Growth

Principles of Macroeconomics7.2 Labor Productivity and Economic Growth
  1. Preface
  2. 1 Welcome to Economics!
    1. Introduction
    2. 1.1 What Economics Is and Why It's Important
    3. 1.2 Microeconomics and Macroeconomics
    4. 1.3 How Economists Use Theories and Models to Understand Economic Issues
    5. 1.4 How Economies Can Be Organized: An Overview of Economic Systems
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
  3. 2 Choice in a World of Scarcity
    1. Introduction to Choice in a World of Scarcity
    2. 2.1 How Individuals Make Choices Based on Their Budget Constraint
    3. 2.2 The Production Possibilities Frontier and Social Choices
    4. 2.3 Confronting Objections to the Economic Approach
    5. Key Terms
    6. Key Concepts and Summary
    7. Self-Check Questions
    8. Review Questions
    9. Critical Thinking Questions
    10. Problems
  4. 3 Demand and Supply
    1. Introduction to Demand and Supply
    2. 3.1 Demand, Supply, and Equilibrium in Markets for Goods and Services
    3. 3.2 Shifts in Demand and Supply for Goods and Services
    4. 3.3 Changes in Equilibrium Price and Quantity: The Four-Step Process
    5. 3.4 Price Ceilings and Price Floors
    6. 3.5 Demand, Supply, and Efficiency
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  5. 4 Labor and Financial Markets
    1. Introduction to Labor and Financial Markets
    2. 4.1 Demand and Supply at Work in Labor Markets
    3. 4.2 Demand and Supply in Financial Markets
    4. 4.3 The Market System as an Efficient Mechanism for Information
    5. Key Terms
    6. Key Concepts and Summary
    7. Self-Check Questions
    8. Review Questions
    9. Critical Thinking Questions
    10. Problems
  6. 5 Elasticity
    1. Introduction to Elasticity
    2. 5.1 Price Elasticity of Demand and Price Elasticity of Supply
    3. 5.2 Polar Cases of Elasticity and Constant Elasticity
    4. 5.3 Elasticity and Pricing
    5. 5.4 Elasticity in Areas Other Than Price
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  7. 6 The Macroeconomic Perspective
    1. Introduction to the Macroeconomic Perspective
    2. 6.1 Measuring the Size of the Economy: Gross Domestic Product
    3. 6.2 Adjusting Nominal Values to Real Values
    4. 6.3 Tracking Real GDP over Time
    5. 6.4 Comparing GDP among Countries
    6. 6.5 How Well GDP Measures the Well-Being of Society
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  8. 7 Economic Growth
    1. Introduction to Economic Growth
    2. 7.1 The Relatively Recent Arrival of Economic Growth
    3. 7.2 Labor Productivity and Economic Growth
    4. 7.3 Components of Economic Growth
    5. 7.4 Economic Convergence
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  9. 8 Unemployment
    1. Introduction to Unemployment
    2. 8.1 How the Unemployment Rate is Defined and Computed
    3. 8.2 Patterns of Unemployment
    4. 8.3 What Causes Changes in Unemployment over the Short Run
    5. 8.4 What Causes Changes in Unemployment over the Long Run
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  10. 9 Inflation
    1. Introduction to Inflation
    2. 9.1 Tracking Inflation
    3. 9.2 How Changes in the Cost of Living are Measured
    4. 9.3 How the U.S. and Other Countries Experience Inflation
    5. 9.4 The Confusion Over Inflation
    6. 9.5 Indexing and Its Limitations
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  11. 10 The International Trade and Capital Flows
    1. Introduction to the International Trade and Capital Flows
    2. 10.1 Measuring Trade Balances
    3. 10.2 Trade Balances in Historical and International Context
    4. 10.3 Trade Balances and Flows of Financial Capital
    5. 10.4 The National Saving and Investment Identity
    6. 10.5 The Pros and Cons of Trade Deficits and Surpluses
    7. 10.6 The Difference between Level of Trade and the Trade Balance
    8. Key Terms
    9. Key Concepts and Summary
    10. Self-Check Questions
    11. Review Questions
    12. Critical Thinking Questions
    13. Problems
  12. 11 The Aggregate Demand/Aggregate Supply Model
    1. Introduction to the Aggregate Demand/Aggregate Supply Model
    2. 11.1 Macroeconomic Perspectives on Demand and Supply
    3. 11.2 Building a Model of Aggregate Demand and Aggregate Supply
    4. 11.3 Shifts in Aggregate Supply
    5. 11.4 Shifts in Aggregate Demand
    6. 11.5 How the AD/AS Model Incorporates Growth, Unemployment, and Inflation
    7. 11.6 Keynes’ Law and Say’s Law in the AD/AS Model
    8. Key Terms
    9. Key Concepts and Summary
    10. Self-Check Questions
    11. Review Questions
    12. Critical Thinking Questions
    13. Problems
  13. 12 The Keynesian Perspective
    1. Introduction to the Keynesian Perspective
    2. 12.1 Aggregate Demand in Keynesian Analysis
    3. 12.2 The Building Blocks of Keynesian Analysis
    4. 12.3 The Phillips Curve
    5. 12.4 The Keynesian Perspective on Market Forces
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
  14. 13 The Neoclassical Perspective
    1. Introduction to the Neoclassical Perspective
    2. 13.1 The Building Blocks of Neoclassical Analysis
    3. 13.2 The Policy Implications of the Neoclassical Perspective
    4. 13.3 Balancing Keynesian and Neoclassical Models
    5. Key Terms
    6. Key Concepts and Summary
    7. Self-Check Questions
    8. Review Questions
    9. Critical Thinking Questions
    10. Problems
  15. 14 Money and Banking
    1. Introduction to Money and Banking
    2. 14.1 Defining Money by Its Functions
    3. 14.2 Measuring Money: Currency, M1, and M2
    4. 14.3 The Role of Banks
    5. 14.4 How Banks Create Money
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  16. 15 Monetary Policy and Bank Regulation
    1. Introduction to Monetary Policy and Bank Regulation
    2. 15.1 The Federal Reserve Banking System and Central Banks
    3. 15.2 Bank Regulation
    4. 15.3 How a Central Bank Executes Monetary Policy
    5. 15.4 Monetary Policy and Economic Outcomes
    6. 15.5 Pitfalls for Monetary Policy
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  17. 16 Exchange Rates and International Capital Flows
    1. Introduction to Exchange Rates and International Capital Flows
    2. 16.1 How the Foreign Exchange Market Works
    3. 16.2 Demand and Supply Shifts in Foreign Exchange Markets
    4. 16.3 Macroeconomic Effects of Exchange Rates
    5. 16.4 Exchange Rate Policies
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  18. 17 Government Budgets and Fiscal Policy
    1. Introduction to Government Budgets and Fiscal Policy
    2. 17.1 Government Spending
    3. 17.2 Taxation
    4. 17.3 Federal Deficits and the National Debt
    5. 17.4 Using Fiscal Policy to Fight Recession, Unemployment, and Inflation
    6. 17.5 Automatic Stabilizers
    7. 17.6 Practical Problems with Discretionary Fiscal Policy
    8. 17.7 The Question of a Balanced Budget
    9. Key Terms
    10. Key Concepts and Summary
    11. Self-Check Questions
    12. Review Questions
    13. Critical Thinking Questions
    14. Problems
  19. 18 The Impacts of Government Borrowing
    1. Introduction to the Impacts of Government Borrowing
    2. 18.1 How Government Borrowing Affects Investment and the Trade Balance
    3. 18.2 Fiscal Policy, Investment, and Economic Growth
    4. 18.3 How Government Borrowing Affects Private Saving
    5. 18.4 Fiscal Policy and the Trade Balance
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  20. 19 Macroeconomic Policy Around the World
    1. Introduction to Macroeconomic Policy around the World
    2. 19.1 The Diversity of Countries and Economies across the World
    3. 19.2 Improving Countries’ Standards of Living
    4. 19.3 Causes of Unemployment around the World
    5. 19.4 Causes of Inflation in Various Countries and Regions
    6. 19.5 Balance of Trade Concerns
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  21. 20 International Trade
    1. Introduction to International Trade
    2. 20.1 Absolute and Comparative Advantage
    3. 20.2 What Happens When a Country Has an Absolute Advantage in All Goods
    4. 20.3 Intra-industry Trade between Similar Economies
    5. 20.4 The Benefits of Reducing Barriers to International Trade
    6. Key Terms
    7. Key Concepts and Summary
    8. Self-Check Questions
    9. Review Questions
    10. Critical Thinking Questions
    11. Problems
  22. 21 Globalization and Protectionism
    1. Introduction to Globalization and Protectionism
    2. 21.1 Protectionism: An Indirect Subsidy from Consumers to Producers
    3. 21.2 International Trade and Its Effects on Jobs, Wages, and Working Conditions
    4. 21.3 Arguments in Support of Restricting Imports
    5. 21.4 How Trade Policy Is Enacted: Globally, Regionally, and Nationally
    6. 21.5 The Tradeoffs of Trade Policy
    7. Key Terms
    8. Key Concepts and Summary
    9. Self-Check Questions
    10. Review Questions
    11. Critical Thinking Questions
    12. Problems
  23. A | The Use of Mathematics in Principles of Economics
  24. The Expenditure-Output Model
  25. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  26. References
  27. Index

By the end of this section, you will be able to:

  • Identify the role of labor productivity in promoting economic growth
  • Analyze the sources of economic growth using the aggregate production function
  • Measure an economy’s rate of productivity growth
  • Evaluate the power of sustained growth

Sustained long-term economic growth comes from increases in worker productivity, which essentially means how well we do things. In other words, how efficient is your nation with its time and workers? Labor productivity is the value that each employed person creates per unit of his or her input. The easiest way to comprehend labor productivity is to imagine a Canadian worker who can make 10 loaves of bread in an hour versus a U.S. worker who in the same hour can make only two loaves of bread. In this fictional example, the Canadians are more productive. Being more productive essentially means you can do more in the same amount of time. This in turn frees up resources to be used elsewhere.

What determines how productive workers are? The answer is pretty intuitive. The first determinant of labor productivity is human capital. Human capital is the accumulated knowledge (from education and experience), skills, and expertise that the average worker in an economy possesses. Typically the higher the average level of education in an economy, the higher the accumulated human capital and the higher the labor productivity.

The second factor that determines labor productivity is technological change. Technological change is a combination of invention—advances in knowledge—and innovation, which is putting that advance to use in a new product or service. For example, the transistor was invented in 1947. It allowed us to miniaturize the footprint of electronic devices and use less power than the tube technology that came before it. Innovations since then have produced smaller and better transistors that that are ubiquitous in products as varied as smart-phones, computers, and escalators. The development of the transistor has allowed workers to be anywhere with smaller devices. These devices can be used to communicate with other workers, measure product quality or do any other task in less time, improving worker productivity.

The third factor that determines labor productivity is economies of scale. Recall that economies of scale are the cost advantages that industries obtain due to size. (Read more about economies of scale in Cost and Industry Structure.) Consider again the case of the fictional Canadian worker who could produce 10 loaves of bread in an hour. If this difference in productivity was due only to economies of scale, it could be that Canadian workers had access to a large industrial-size oven while the U.S. worker was using a standard residential size oven.

Now that we have explored the determinants of worker productivity, let’s turn to how economists measure economic growth and productivity.

Sources of Economic Growth: The Aggregate Production Function

To analyze the sources of economic growth, it is useful to think about a production function, which is the process of turning economic inputs like labor, machinery, and raw materials into outputs like goods and services used by consumers. A microeconomic production function describes the inputs and outputs of a firm, or perhaps an industry. In macroeconomics, the connection from inputs to outputs for the entire economy is called an aggregate production function.

Components of the Aggregate Production Function

Economists construct different production functions depending on the focus of their studies. Figure 7.2 presents two examples of aggregate production functions. In the first production function, shown in Figure 7.2 (a), the output is GDP. The inputs in this example are workforce, human capital, physical capital, and technology. We discuss these inputs further in the module, Components of Economic Growth.

The first illustration shows that workforce, human capital, physical capital, and technology produce GDP. The second illustration shows that human capital per person, physical capital per person, and technology per person produce GDP per capital.
Figure 7.2 Aggregate Production Functions An aggregate production function shows what goes into producing the output for an overall economy. (a) This aggregate production function has GDP as its output. (b) This aggregate production function has GDP per capita as its output. Because it is calculated on a per-person basis, the labor input is already figured into the other factors and does not need to be listed separately.

Measuring Productivity

An economy’s rate of productivity growth is closely linked to the growth rate of its GDP per capita, although the two are not identical. For example, if the percentage of the population who holds jobs in an economy increases, GDP per capita will increase but the productivity of individual workers may not be affected. Over the long term, the only way that GDP per capita can grow continually is if the productivity of the average worker rises or if there are complementary increases in capital.

A common measure of U.S. productivity per worker is dollar value per hour the worker contributes to the employer’s output. This measure excludes government workers, because their output is not sold in the market and so their productivity is hard to measure. It also excludes farming, which accounts for only a relatively small share of the U.S. economy. Figure 7.3 shows an index of output per hour, with 2009 as the base year (when the index equals 100). The index equaled about 106 in 2014. In 1972, the index equaled 50, which shows that workers have more than doubled their productivity since then.

The graph shows that output per hour has steadily increased since 1960, when it was $32, to 2014, when it was $106.148.
Figure 7.3 Output per Hour Worked in the U.S. Economy, 1947–2011 Output per hour worked is a measure of worker productivity. In the U.S. economy, worker productivity rose more quickly in the 1960s and the mid-1990s compared with the 1970s and 1980s. However, these growth-rate differences are only a few percentage points per year. Look carefully to see them in the changing slope of the line. The average U.S. worker produced over twice as much per hour in 2014 than he did in the early 1970s. (Source: U.S. Department of Labor, Bureau of Labor Statistics.)

According to the Department of Labor, U.S. productivity growth was fairly strong in the 1950s but then declined in the 1970s and 1980s before rising again in the second half of the 1990s and the first half of the 2000s. In fact, the rate of productivity measured by the change in output per hour worked averaged 3.2% per year from 1950 to 1970; dropped to 1.9% per year from 1970 to 1990; and then climbed back to over 2.3% from 1991 to the present, with another modest slowdown after 2001. Figure 7.4 shows average annual rates of productivity growth averaged over time since 1950.

The chart shows productivity growth for various time periods. For 1950 to 1970 it was 2.5%; 1971 to 1990 was about 1.3%; 1991 to 2000 was 2.2%; and 2001 to 2014 was 2.1%.
Figure 7.4 Productivity Growth Since 1950 U.S. growth in worker productivity was very high between 1950 and 1970. It then declined to lower levels in the 1970s and the 1980s. The late 1990s and early 2000s saw productivity rebound, but then productivity sagged a bit in the 2000s. Some think the productivity rebound of the late 1990s and early 2000s marks the start of a “new economy” built on higher productivity growth, but this cannot be determined until more time has passed. (Source: U.S. Department of Labor, Bureau of Labor Statistics.)

The “New Economy” Controversy

In recent years a controversy has been brewing among economists about the resurgence of U.S. productivity in the second half of the 1990s. One school of thought argues that the United States had developed a “new economy” based on the extraordinary advances in communications and information technology of the 1990s. The most optimistic proponents argue that it would generate higher average productivity growth for decades to come. The pessimists, on the other hand, argue that even five or ten years of stronger productivity growth does not prove that higher productivity will last for the long term. It is hard to infer anything about long-term productivity trends during the later part of the 2000s, because the steep recession of 2008–2009, with its sharp but not completely synchronized declines in output and employment, complicates any interpretation. While productivity growth was high in 2009 and 2010 (around 3%), it has slowed down since then.

Productivity growth is also closely linked to the average level of wages. Over time, the amount that firms are willing to pay workers will depend on the value of the output those workers produce. If a few employers tried to pay their workers less than what those workers produced, then those workers would receive offers of higher wages from other profit-seeking employers. If a few employers mistakenly paid their workers more than what those workers produced, those employers would soon end up with losses. In the long run, productivity per hour is the most important determinant of the average wage level in any economy. To learn how to compare economies in this regard, follow the steps in the following Work It Out feature.

Work It Out

Comparing the Economies of Two Countries

The Organization for Economic Co-operation and Development (OECD) tracks data on the annual growth rate of real GDP per hour worked. You can find these data on the OECD data webpage “Labour productivity growth in the total economy” at this website.

Step 1. Visit the OECD website given above and select two countries to compare.

Step 2. On the drop-down menu “Variable,” select “Real GDP, Annual Growth, in percent” and record the data for the countries you have chosen for the five most recent years.

Step 3. Go back to the drop-down menu and select “Real GDP per Hour Worked, Annual Growth Rate, in percent” and select data for the same years for which you selected GDP data.

Step 4. Compare real GDP growth for both countries. Table 7.2 provides an example of a comparison between Australia and Belgium.

Australia 2009 2010 2011 2012 2013
Real GDP Growth (%) 0.1% 1.0% 2.2% 0.8 0.7%
Real GDP Growth/Hours Worked (%) 1.9% –0.3% 2.4% 3.3% 1.4%
Belgium 2009 2010 2011 2012 2013
Real GDP Growth (%) –3.4 1.6 0.8 –0.6 –0.2
Real GDP Growth/Hours Worked (%) –1.3 –1.4 –0.5 –0.3 0.3
Table 7.2

Step 5. Consider the many factors can affect growth. For example, one factor that may have affected Australia is its isolation from Europe, which may have insulated the country from the effects of the global recession. In Belgium’s case, the global recession seems to have had an impact on both GDP and real GDP per hours worked between 2009 and 2013, though productivity does seem to be recovering.

The Power of Sustained Economic Growth

Nothing is more important for people’s standard of living than sustained economic growth. Even small changes in the rate of growth, when sustained and compounded over long periods of time, make an enormous difference in the standard of living. Consider Table 7.3, in which the rows of the table show several different rates of growth in GDP per capita and the columns show different periods of time. Assume for simplicity that an economy starts with a GDP per capita of 100. The table then applies the following formula to calculate what GDP will be at the given growth rate in the future:

GDP at starting date × (1 + growth rate of GDP)years = GDP at end dateGDP at starting date × (1 + growth rate of GDP)years = GDP at end date

For example, an economy that starts with a GDP of 100 and grows at 3% per year will reach a GDP of 209 after 25 years; that is, 100 (1.03)25 = 209.

The slowest rate of GDP per capita growth in the table, just 1% per year, is similar to what the United States experienced during its weakest years of productivity growth. The second highest rate, 3% per year, is close to what the U.S. economy experienced during the strong economy of the late 1990s and into the 2000s. Higher rates of per capita growth, such as 5% or 8% per year, represent the experience of rapid growth in economies like Japan, Korea, and China.

Table 7.3 shows that even a few percentage points of difference in economic growth rates will have a profound effect if sustained and compounded over time. For example, an economy growing at a 1% annual rate over 50 years will see its GDP per capita rise by a total of 64%, from 100 to 164 in this example. However, a country growing at a 5% annual rate will see (almost) the same amount of growth—from 100 to 163—over just 10 years. Rapid rates of economic growth can bring profound transformation. (See the following Clear It Up feature on the relationship between compound growth rates and compound interest rates.) If the rate of growth is 8%, young adults starting at age 20 will see the average standard of living in their country more than double by the time they reach age 30, and grow nearly sevenfold by the time they reach age 45.

Growth Rate Value of an original 100 in 10 Years Value of an original 100 in 25 Years Value of an original 100 in 50 Years
1% 110 128 164
3% 134 209 438
5% 163 338 1,147
8% 216 685 4,690
Table 7.3 Growth of GDP over Different Time Horizons

Clear It Up

How are compound growth rates and compound interest rates related?

The formula for growth rates of GDP over different periods of time, as shown in Figure 7.3, is exactly the same as the formula for how a given amount of financial savings grows at a certain interest rate over time, as presented in Choice in a World of Scarcity. Both formulas have the same ingredients:

  • an original starting amount, in one case GDP and in the other case an amount of financial saving;
  • a percentage increase over time, in one case the growth rate of GDP and in the other case an interest rate;
  • and an amount of time over which this effect happens.

Recall that compound interest is interest that is earned on past interest. It causes the total amount of financial savings to grow dramatically over time. Similarly, compound rates of economic growth, or the compound growth rate, means that the rate of growth is being multiplied by a base that includes past GDP growth, with dramatic effects over time.

For example, in 2013, the World Fact Book, produced by the Central Intelligence Agency, reported that South Korea had a GDP of $1.67 trillion with a growth rate of 2.8%. We can estimate that at that growth rate, South Korea’s GDP will be $1.92 trillion in five years. If we apply the growth rate to each year’s ending GDP for the next five years, we will calculate that at the end of year one, GDP is $1.72 trillion. In year two, we start with the end-of-year one value of $1.67 and increase it by 2%. Year three starts with the end-of-year two GDP, and we increase it by 2% and so on, as depicted in the Table 7.4.

Year Starting GDP Growth Rate 2% Year-End Amount
1 $1.67 Trillion × (1+0.028) $1.72 Trillion
2 $1.72 Trillion × (1+0.028) $1.76 Trillion
3 $1.76 Trillion × (1+0.028) $1.81 Trillion
4 $1.81 Trillion × (1+0.028) $1.87 Trillion
5 $1.87 Trillion × (1+0.028) $1.92 Trillion
Table 7.4

Another way to calculate the growth rate is to apply the following formula:

Future Value = Present Value × (1 + g)nFuture Value = Present Value × (1 + g)n

Where “future value” is the value of GDP five years hence, “present value” is the starting GDP amount of $1.64 trillion, “g” is the growth rate of 2%, and “n” is the number of periods for which we are calculating growth.

             Future Value = 1.67 × (1+0.028)5 = $1.92 trillion             Future Value = 1.67 × (1+0.028)5 = $1.92 trillion
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/principles-macroeconomics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/principles-macroeconomics/pages/1-introduction
Citation information

© Oct 23, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.