Równanie kwadratowe Jeżeli
a
x
2
+
b
x
+
c
=
0
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
(
a
≠
0
a
≠
0
a \neq 0
), wtedy
x
=
−
b
±
b
2
−
4
a
c
2
a
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \frac{-b\pm \sqrt{b^2 - 4ac}}{2a}
.
Geometria
Trójkąt o podstawie
b
b
b
i wysokości
h
h
h
:
Powierzchnia
=
1
2
b
h
=
1
2
b
h
\prefop{=} \frac12 b h
Koło o promieniu
r
r
r
:
Obwód
=
2
π
r
=
2
π
r
\prefop{=} 2 \pi r
Pole powierzchni
=
π
r
2
=
π
r
2
\prefop{=} \pi r^2
Kula o promieniu
r
r :
Pole powierzchni
=
4
π
r
2
=
4
π
r
2
\prefop{=} 4 \pi r^2
Objętość
=
4
3
π
r
3
=
4
3
π
r
3
\prefop{=} \frac43 \pi r^3
Walec o promieniu
r
r i wysokości
h
h
h
:
Pole powierzchni bocznej
=
2
π
r
h
=
2
π
r
h
\prefop{=} 2 \pi r h
Objętość
=
π
r
2
h
=
π
r
2
h
\prefop{=} \pi r^2 h
Trygonometria
Tożsamości trygonometryczne
sin
θ
=
1
cosec
θ
sin
θ
=
1
cosec
θ
\sin \theta = \frac{1}{\prefop{cosec} \theta}
cos
θ
=
1
sec
θ
cos
θ
=
1
sec
θ
\cos \theta = \frac{1}{\prefop{sec} \theta}
tg
θ
=
1
ctg
θ
tg
θ
=
1
ctg
θ
\tg \theta = \frac{1}{\ctg \theta}
sin
90
°
−
θ
=
cos
θ
sin
90
°
−
θ
=
cos
θ
\sin (\ang{90} - \theta) = \cos \theta
cos
90
°
−
θ
=
sin
θ
cos
90
°
−
θ
=
sin
θ
\cos (\ang{90} - \theta) = \sin\theta
tg
90
°
−
θ
=
ctg
θ
tg
90
°
−
θ
=
ctg
θ
\tg (\ang{90} - \theta) = \ctg\theta
sin
2
θ
+
cos
2
θ
=
1
sin
2
θ
+
cos
2
θ
=
1
\sin^2 \theta + \cos^2 \theta = 1
sec
2
θ
−
tg
2
θ
=
1
sec
2
θ
−
tg
2
θ
=
1
\cos^2 \theta - \tg^2 \theta = 1
tg
θ
=
sin
θ
cos
θ
tg
θ
=
sin
θ
cos
θ
\tg \theta = \frac{\sin \theta}{\cos \theta}
sin
α
±
β
=
sin
α
cos
β
±
cos
α
sin
β
sin
α
±
β
=
sin
α
cos
β
±
cos
α
sin
β
\sin (\alpha \pm \beta) = \sin (\alpha) \cos (\beta) \pm \cos (\alpha) \sin (\beta)
cos
α
±
β
=
cos
α
cos
β
∓
sin
α
sin
β
cos
α
±
β
=
cos
α
cos
β
∓
sin
α
sin
β
\cos (\alpha \pm \beta) = \cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)
tg
α
±
β
=
tg
α
±
tg
β
1
∓
tg
α
tg
β
tg
α
±
β
=
tg
α
±
tg
β
1
∓
tg
α
tg
β
\tg (\alpha \pm \beta) = \frac{\tg \alpha \pm \tg \beta}{1 \mp \tg (\alpha) \tg (\beta)}
sin
2
θ
=
2
sin
θ
cos
θ
sin
2
θ
=
2
sin
θ
cos
θ
\sin(2\theta) = 2 \sin (\theta) \cos (\theta)
cos
2
θ
=
cos
2
θ
−
sin
2
θ
=
2
cos
2
θ
−
1
=
1
−
2
sin
2
θ
cos
2
θ
=
cos
2
θ
−
sin
2
θ
=
2
cos
2
θ
−
1
=
1
−
2
sin
2
θ
\cos(2\theta) = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2\sin^2 \theta
sin
α
+
sin
β
=
2
sin
α
+
β
2
cos
α
−
β
2
sin
α
+
sin
β
=
2
sin
α
+
β
2
cos
α
−
β
2
\sin \alpha + \sin \beta = 2 \sin (\frac{\alpha + \beta}{2}) \cos (\frac{\alpha - \beta}{2})
cos
α
+
cos
β
=
2
cos
α
+
β
2
cos
α
−
β
2
cos
α
+
cos
β
=
2
cos
α
+
β
2
cos
α
−
β
2
\cos \alpha + \cos \beta = 2 \cos (\frac{\alpha + \beta}{2}) \cos (\frac{\alpha - \beta}{2})
Trójkąty
Twierdzenie sinusów:
a
sin
α
=
b
sin
β
=
c
sin
γ
a
sin
α
=
b
sin
β
=
c
sin
γ
\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}
Twierdzenie cosinusów:
c
2
=
a
2
+
b
2
−
2
a
b
cos
γ
c
2
=
a
2
+
b
2
−
2
a
b
cos
γ
c^2 = a^2 + b^2 - 2 ab \cos \gamma
Twierdzenie Pitagorasa:
c
2
=
a
2
+
b
2
c
2
=
a
2
+
b
2
c^2 = a^2 + b^2
Rozwinięcie funkcji w szeregi potęgowe
Wzór dwumianowy:
a
+
b
n
=
a
n
+
n
1
!
a
n
−
1
b
+
n
n
−
1
2
!
a
n
−
2
b
2
+
…
+
n
n
−
1
2
!
a
2
b
n
−
2
+
n
1
!
a
b
n
−
1
+
b
n
=
∑
k
=
0
n
n
k
a
n
−
k
b
k
a
+
b
n
=
a
n
+
n
1
!
a
n
−
1
b
+
n
n
−
1
2
!
a
n
−
2
b
2
+
…
+
n
n
−
1
2
!
a
2
b
n
−
2
+
n
1
!
a
b
n
−
1
+
b
n
=
∑
k
=
0
n
n
k
a
n
−
k
b
k
\begin{multiline} (a+b)^n &= a^n + \frac{n}{1!} a^{n-1} b + \frac{n (n-1)}{2!} a^{n-2} b^2 + \dots + \frac{n(n-1)}{2!} a^2 b^{n-2} + \frac{n}{1!} a b^{n-1} + b^n \\ &= \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k}b^{k}\end{multiline}
1
±
x
n
=
1
±
n
x
1
!
+
n
n
−
1
x
2
2
!
±
…
=
∑
k
=
0
n
±
1
k
n
k
x
k
, dla
x
<
1
1
±
x
n
=
1
±
n
x
1
!
+
n
n
−
1
x
2
2
!
±
…
=
∑
k
=
0
n
±
1
k
n
k
x
k
, dla
x
<
1
(1\pm x)^n = 1 \pm \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} \pm \dots = \sum_{k=0}^n ( \prefop{\pm} 1)^k \begin{pmatrix} n \\ k \end{pmatrix} x^k \text{, dla } \abs{x} < 1
1
±
x
−
n
=
1
∓
n
x
1
!
+
n
n
+
1
x
2
2
!
∓
…
=
∑
k
=
0
∞
∓
1
k
k
+
n
−
1
k
x
k
, dla
x
<
1
1
±
x
−
n
=
1
∓
n
x
1
!
+
n
n
+
1
x
2
2
!
∓
…
=
∑
k
=
0
∞
∓
1
k
k
+
n
−
1
k
x
k
, dla
x
<
1
(1\pm x)^{-n} = 1 \mp \frac{nx}{1!} + \frac{n(n+1)x^2}{2!} \mp \dots = \sum_{k=0}^{\infty} ( \prefop{\mp} 1)^k \begin{pmatrix} k+n-1 \\ k \end{pmatrix} x^k \text{, dla } \abs{x} < 1
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
…
=
∑
k
=
0
∞
-1
k
x
2
k
+
1
2
k
+
1
!
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
…
=
∑
k
=
0
∞
-1
k
x
2
k
+
1
2
k
+
1
!
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
…
=
∑
k
=
0
∞
-1
k
x
2
k
2
k
!
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
…
=
∑
k
=
0
∞
-1
k
x
2
k
2
k
!
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}
tg
x
=
x
+
x
3
3
+
2
x
5
15
+
…
, dla
x
<
π
2
tg
x
=
x
+
x
3
3
+
2
x
5
15
+
…
, dla
x
<
π
2
\tg x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots \text{, dla } \abs{x} < \frac{\pi}{2}
e
x
=
1
+
x
+
x
2
2
!
+
…
=
∑
k
=
0
∞
x
k
k
!
e
x
=
1
+
x
+
x
2
2
!
+
…
=
∑
k
=
0
∞
x
k
k
!
e^x = 1 + x + \frac{x^2}{2!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}
ln
1
+
x
=
x
−
x
2
2
+
x
3
3
−
…
=
∑
k
=
1
∞
-1
k
+
1
x
k
k
, dla
x
<
1
ln
1
+
x
=
x
−
x
2
2
+
x
3
3
−
…
=
∑
k
=
1
∞
-1
k
+
1
x
k
k
, dla
x
<
1
\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} \text{, dla } \abs{x} < 1
Pochodne
d
d
x
a
f
x
=
a
d
d
x
f
x
d
d
x
a
f
x
=
a
d
d
x
f
x
\dd{x} [af \apply (x)] = a \dd{x} f \apply (x)
d
d
x
f
x
+
g
x
=
d
d
x
f
x
+
d
d
x
g
x
d
d
x
f
x
+
g
x
=
d
d
x
f
x
+
d
d
x
g
x
\dd{x} [f \apply (x) + g \apply (x)] = \dd{x} f \apply (x) + \dd{x} g \apply (x)
d
d
x
f
x
g
x
=
f
x
d
d
x
g
x
+
g
x
d
d
x
f
x
d
d
x
f
x
g
x
=
f
x
d
d
x
g
x
+
g
x
d
d
x
f
x
\dd{x}[f\apply (x) g \apply (x)] = f \apply (x) \dd{x} g \apply (x) + g \apply (x) \dd{x} f \apply (x)
d
d
x
f
u
=
d
d
u
f
u
⋅
d
u
d
x
d
d
x
f
u
=
d
d
u
f
u
⋅
d
u
d
x
\dd{x} f \apply (u) = \dd{u} f \apply (u) \cdot \frac{\d u}{\d x}
d
d
x
x
m
=
m
x
m
−
1
d
d
x
x
m
=
m
x
m
−
1
\dd{x} x^m = m x^{m-1}
d
d
x
sin
x
=
cos
x
d
d
x
sin
x
=
cos
x
\dd{x} \sin x = \cos x
d
d
x
cos
x
=
−
sin
x
d
d
x
cos
x
=
−
sin
x
\dd{x} \cos x = - \sin x
d
d
x
tg
x
=
1
cos
2
x
d
d
x
tg
x
=
1
cos
2
x
\dd x \tg x = \frac{1}{\cos^2 x}
d
d
x
ctg
x
=
−
1
sin
2
x
d
d
x
ctg
x
=
−
1
sin
2
x
\dd x \ctg x = - \frac{1}{\sin^2 x}
d
d
x
sec
x
=
tg
x
sec
x
d
d
x
sec
x
=
tg
x
sec
x
\dd x \prefop{sec} x = \tg (x) \prefop{sec} (x)
d
d
x
cosec
x
=
−
ctg
x
cosec
x
d
d
x
cosec
x
=
−
ctg
x
cosec
x
\dd x \prefop{cosec} x = - \ctg (x) \prefop{cosec} (x)
d
d
x
e
x
=
e
x
d
d
x
e
x
=
e
x
\dd x e^x = e^x
d
d
x
ln
x
=
1
x
d
d
x
ln
x
=
1
x
\dd x \ln x = \frac{1}{x}
d
d
x
arc sin
x
=
1
1
−
x
2
d
d
x
arc sin
x
=
1
1
−
x
2
\dd x \arcsin x = \frac{1}{\sqrt{1-x^2}}
d
d
x
arc cos
x
=
−
1
1
−
x
2
d
d
x
arc cos
x
=
−
1
1
−
x
2
\dd x \arccos x = - \frac{1}{\sqrt{1-x^2}}
d
d
x
arc tg
x
=
1
1
+
x
2
d
d
x
arc tg
x
=
1
1
+
x
2
\dd x \arctg x = \frac{1}{1+x^2}
Całki
∫
a
f
x
d
x
=
a
∫
f
x
d
x
∫
a
f
x
d
x
=
a
∫
f
x
d
x
\int a f \apply (x) \d x = a \int f \apply (x) \d x
∫
f
x
+
g
x
d
x
=
∫
f
x
d
x
+
∫
g
x
d
x
∫
f
x
+
g
x
d
x
=
∫
f
x
d
x
+
∫
g
x
d
x
\int [f \apply (x) + g \apply (x)] \d x = \int f \apply (x) \d x + \int g \apply (x) \d x
∫
x
m
d
x
=
x
m
+
1
m
+
1
,
dla
m
≠
1
ln
x
,
dla
m
=
1
∫
x
m
d
x
=
x
m
+
1
m
+
1
,
dla
m
≠
1
ln
x
,
dla
m
=
1
\int x^m \d x = \left{ \begin{matrix*}[l] \frac{x^{m+1}}{m+1}\text{,} &\text{dla } m\neq 1 \\ \ln \abs{x} \text{,} &\text{dla } m=1 \end{matrix*} \right.
∫
sin
x
d
x
=
−
cos
x
∫
sin
x
d
x
=
−
cos
x
\int \sin x \d x = - \cos x
∫
cos
x
d
x
=
sin
x
∫
cos
x
d
x
=
sin
x
\int \cos x \d x = \sin x
∫
tg
x
d
x
=
−
ln
cos
x
∫
tg
x
d
x
=
−
ln
cos
x
\int \tg x \d x = - \ln \abs{\cos x}
∫
sin
2
a
x
d
x
=
x
2
−
sin
2
a
x
4
a
∫
sin
2
a
x
d
x
=
x
2
−
sin
2
a
x
4
a
\int \sin^2 (ax) \d x = \frac{x}{2} - \frac{\sin(2ax)}{4a}
∫
cos
2
a
x
d
x
=
x
2
+
sin
2
a
x
4
a
∫
cos
2
a
x
d
x
=
x
2
+
sin
2
a
x
4
a
\int \cos^2 (ax) \d x= \frac{x}{2} + \frac{\sin (2ax)}{4a}
∫
sin
a
x
cos
a
x
d
x
=
−
cos
2
a
x
4
a
∫
sin
a
x
cos
a
x
d
x
=
−
cos
2
a
x
4
a
\int \sin (ax) \cos (ax) \d x = - \frac{\cos(2ax)}{4a}
∫
e
a
x
d
x
=
1
a
e
a
x
∫
e
a
x
d
x
=
1
a
e
a
x
\int e^{ax} \d x = \frac{1}{a} e^{ax}
∫
x
e
a
x
d
x
=
e
a
x
a
2
a
x
−
1
∫
x
e
a
x
d
x
=
e
a
x
a
2
a
x
−
1
\int x e^{ax} \d x = \frac{e^{ax}}{a^2}(ax - 1)
∫
ln
a
x
d
x
=
x
ln
a
x
−
x
∫
ln
a
x
d
x
=
x
ln
a
x
−
x
\int \ln (ax) \d x = x \ln (ax) - x
∫
d
x
a
2
+
x
2
=
1
a
arc tg
x
a
∫
d
x
a
2
+
x
2
=
1
a
arc tg
x
a
\int \frac{\d x}{a^2 + x^2} = \frac{1}{a} \arctg (\frac{x}{a})
∫
d
x
a
2
−
x
2
=
1
2
a
ln
x
+
a
x
−
a
∫
d
x
a
2
−
x
2
=
1
2
a
ln
x
+
a
x
−
a
\int \frac{\d x}{a^2 - x^2} = \frac{1}{2a} \ln \abs{\frac{x+a}{x-a}}
∫
d
x
a
2
+
x
2
=
arcsinh
x
a
=
ln
x
a
+
x
a
2
+
1
∫
d
x
a
2
+
x
2
=
arcsinh
x
a
=
ln
x
a
+
x
a
2
+
1
\int \frac{\d x}{\sqrt{a^2 + x^2}} = \prefop{arcsinh} (\frac{x}{a}) = \ln \abs{\frac{x}{a} + \sqrt{(\frac{x}{a})^2 + 1}}
∫
d
x
a
2
−
x
2
=
arc sin
x
a
∫
d
x
a
2
−
x
2
=
arc sin
x
a
\int \frac{\d x}{\sqrt{a^2 - x^2}} = \arcsin (\frac{x}{a})
∫
a
2
+
x
2
d
x
=
x
2
a
2
+
x
2
+
a
2
2
arcsinh
x
a
∫
a
2
+
x
2
d
x
=
x
2
a
2
+
x
2
+
a
2
2
arcsinh
x
a
\int \sqrt{a^2 + x^2} \d x = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \prefop{arcsinh} (\frac{x}{a})
∫
a
2
−
x
2
d
x
=
x
2
a
2
−
x
2
+
a
2
2
arc sin
x
a
∫
a
2
−
x
2
d
x
=
x
2
a
2
−
x
2
+
a
2
2
arc sin
x
a
\int \sqrt{a^2 - x^2} \d x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin (\frac{x}{a})